Over het archief
Het OWA, het open archief van het Waterbouwkundig Laboratorium heeft tot doel alle vrij toegankelijke onderzoeksresultaten van dit instituut in digitale vorm aan te bieden. Op die manier wil het de zichtbaarheid, verspreiding en gebruik van deze onderzoeksresultaten, alsook de wetenschappelijke communicatie maximaal bevorderen.
Dit archief wordt uitgebouwd en beheerd volgens de principes van de Open Access Movement, en het daaruit ontstane Open Archives Initiative.
Basisinformatie over ‘Open Access to scholarly information'.
[ meld een fout in dit record ] | mandje (0): toevoegen | toon |
Elucidating multi-input processing 3-node gene regulatory network topologies capable of generating striped gene expression patterns Arboleda-Rivera, J.C.; Machado-Rodríguez, G.; Rodríguez, B.A.; Gutiérrez, J. (2021). Elucidating multi-input processing 3-node gene regulatory network topologies capable of generating striped gene expression patterns. bioRxiv 2021: 1-24. https://dx.doi.org/10.1101/2021.11.01.466847
In: bioRxiv: the preprint server for biology., meer
Is gerelateerd aan: Arboleda-Rivera, J.C.; Machado-Rodríguez, G.; Rodríguez, B.A.; Gutiérrez, J. (2022). Elucidating multi-input processing 3-node gene regulatory network topologies capable of generating striped gene expression patterns. PLoS computational biology 18(2): e1009704. https://dx.doi.org/10.1371/journal.pcbi.1009704, meer
|
Beschikbaar in | Auteurs |
| |
Documenttype: Preprint |
Auteurs | Top | |
|
Abstract |
Methods In this study, we apply a Markov chain Monte Carlo (MCMC)-like algorithm to probe the design space of three-node GRNs with the ability to generate a band-like expression pattern (target phenotype) in the middle of an arrangement of 30 cells, which resemble a simple (1-D) morphogenetic field in a developing embryo. Unlike most modeling studies published so far, here we explore the space of GRN topologies with nodes having the potential to perceive the same input signal differently. This allows for a lot more flexibility during the search space process, and thus enables us to identify a larger set of potentially interesting and realizable morphogen interpretation mechanisms. Results Out of 2061 GRNs selected using the search space algorithm, we found 714 classes of network topologies that could correctly interpret the morphogen. Notably, the main network motif that generated the target phenotype in response to the input signal was the type 3 Incoherent Feed-Forward Loop (I3-FFL), which agrees with previous theoretical expectations and experimental observations. Particularly, compared to a previously reported pattern forming GRN topologies, we have uncovered a great variety of novel network designs, some of which might be worth inquiring through synthetic biology methodologies to test for the ability of network design with minimal regulatory complexity to interpret a developmental cue robustly. Author summary Systems biology is a fast growing field largely powered by advances in high-performance computing and sophisticated mathematical modeling of biological systems. Based on these advances, we are now in a position to mechanistically understand and accurately predict the behavior of complex biological processes, including cell differentiation and spatial pattern formation during embryogenesis. In this article, we use an in silico approach to probe the design space of multi-input, three-node Gene Regulatory Networks (GRNs) capable of generating a striped gene expression pattern in the context of a simplified 1-D morphogenetic field. |
Top | Auteurs |