Zoeken
Zoeken kan via de modus 'eenvoudig zoeken' (één veld) of uitgebreid via 'geavanceerd zoeken' (meerdere velden). Zo kan je bv. zoeken op een combinatie van een auteursnaam (auteur), een jaartal (jaar) en een documenttype.
Boekenmand
Nuttige resultaten kan je aanvinken en toevoegen aan een mandje. De inhoud hiervan kan je exporteren of afdrukken (naar bv. PDF).
RSS
Op de hoogte blijven van nieuw toegevoegde publicaties binnen uw interessegebied? Dit kan door een RSS-feed (?) te maken van jouw zoekopdracht.
nieuwe zoekopdracht
one publication added to basket [340357] |
Behind the scenes of streamflow model performance
Bouaziz, J.E.; Fenicia, F.; Thirel, G.; de Boer-Euser, T.; Buitink, J.; Brauer, C.; De Niel, J.; Dewals, B.; Drogues, G.; Grelier, B.; Melsen, L.; Moustakas, S.; Nossent, J.; Pereira, F.; Sprokkereef, E.; Stam, J.; Weerts, A.H.; Willems, P.; Savenije, H.H.G.; Hrachowitz, M. (2021). Behind the scenes of streamflow model performance. Hydrol. Earth Syst. Sci. 25(2): 1069-1095. https://dx.doi.org/10.5194/hess-25-1069-2021
In: Hydrology and Earth System Sciences. European Geosciences Union: Göttingen. ISSN 1027-5606; e-ISSN 1607-7938, meer
| |
Trefwoorden |
Numerical modelling Water management > Hydraulics > Conceptual models Water management > Statistics > Uncertainty analysis Water management > Water quantity > Water system knowledge
|
Auteurs | | Top |
- Bouaziz, J.E.
- Fenicia, F.
- Thirel, G.
- de Boer-Euser, T.
- Buitink, J.
- Brauer, C.
- De Niel, J.
|
- Dewals, B.
- Drogues, G.
- Grelier, B.
- Melsen, L.
- Moustakas, S.
- Nossent, J., meer
- Pereira, F., meer
|
- Sprokkereef, E.
- Stam, J.
- Weerts, A.H.
- Willems, P.
- Savenije, H.H.G.
- Hrachowitz, M.
|
Abstract |
Streamflow is often the only variable used to evaluate hydrological models. In a previous international comparison study, eight research groups followed an identical protocol to calibrate 12 hydrological models using observed streamflow of catchments within the Meuse basin. In the current study, we quantify the differences in five states and fluxes of these 12 process-based models with similar streamflow performance, in a systematic and comprehensive way. Next, we assess model behavior plausibility by ranking the models for a set of criteria using streamflow and remote-sensing data of evaporation, snow cover, soil moisture and total storage anomalies. We found substantial dissimilarities between models for annual interception and seasonal evaporation rates, the annual number of days with water stored as snow, the mean annual maximum snow storage and the size of the root-zone storage capacity. These differences in internal process representation imply that these models cannot all simultaneously be close to reality. Modeled annual evaporation rates are consistent with Global Land Evaporation Amsterdam Model (GLEAM) estimates. However, there is a large uncertainty in modeled and remote-sensing annual interception. Substantial differences are also found between Moderate Resolution Imaging Spectroradiometer (MODIS) and modeled number of days with snow storage. Models with relatively small root-zone storage capacities and without root water uptake reduction under dry conditions tend to have an empty root-zone storage for several days each summer, while this is not suggested by remote-sensing data of evaporation, soil moisture and vegetation indices. On the other hand, models with relatively large root-zone storage capacities tend to overestimate very dry total storage anomalies of the Gravity Recovery and Climate Experiment (GRACE). None of the models is systematically consistent with the information available from all different (remote-sensing) data sources. Yet we did not reject models given the uncertainties in these data sources and their changing relevance for the system under investigation. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.