Zoeken
Zoeken kan via de modus 'eenvoudig zoeken' (één veld) of uitgebreid via 'geavanceerd zoeken' (meerdere velden). Zo kan je bv. zoeken op een combinatie van een auteursnaam (auteur), een jaartal (jaar) en een documenttype.
Boekenmand
Nuttige resultaten kan je aanvinken en toevoegen aan een mandje. De inhoud hiervan kan je exporteren of afdrukken (naar bv. PDF).
RSS
Op de hoogte blijven van nieuw toegevoegde publicaties binnen uw interessegebied? Dit kan door een RSS-feed (?) te maken van jouw zoekopdracht.
[ meld een fout in dit record ] | mandje (1): toevoegen | toon |
one publication added to basket [211478] | |
Super-ensemble techniques: Application to surface drift prediction Vandenbulcke, L.; Beckers, J.M.; Lenartz, F.; Barth, A.; Poulain, P.M.; Aidonidis, M.; Meyrat, J.; Ardhuin, F.; Tonani, M.; Fratianni, C.; Torrisi, L.; Pallela, D.; Chiggiato, J.; Tudor, M.; Book, J.W.; Martin, P.; Peggion, G.; Rixen, M. (2009). Super-ensemble techniques: Application to surface drift prediction. Prog. Oceanogr. 82(3): 149-167. dx.doi.org/10.1016/j.pocean.2009.06.002
In: Progress in Oceanography. Pergamon: Oxford,New York,. ISSN 0079-6611; e-ISSN 1873-4472, meer
|
Beschikbaar in | Auteurs |
|
Trefwoord |
|
Author keywords |
|
Auteurs | Top | |
|
|
|
Abstract |
When the forecast period is relatively short (12 h), the discussed methods lead to much smaller forecasting errors compared with individual models (at least three times smaller), with the dynamic methods leading to the best results. When many models are available, errors can be further reduced by removing colinearities between them by performing a principal component analysis. At the same time, this reduces the amount of weights to be determined. In complex environments when meso- and smaller scale eddy activity is strong, such as the Ligurian Sea, the skill of individual models may vary over time periods smaller than the forecasting period (e.g. when the latter is 36 h). In these cases, a simpler method such as a fixed linear combination or a simple ensemble mean may lead to the smallest forecast errors. In environments where surface currents have strong mean-kinetic energies (e.g. the Western Adriatic Current), dynamic methods can be particularly successful in predicting the drift of surface waters. In any case, the dynamic hyper-ensemble methods allow to estimate a characteristic time during which the model weights are more or less stable, which allows predicting how long the obtained combination will be valid in forecasting mode, and hence to choose which hyper-ensemble method one should use. |
Top | Auteurs |