Zoeken
Zoeken kan via de modus 'eenvoudig zoeken' (één veld) of uitgebreid via 'geavanceerd zoeken' (meerdere velden). Zo kan je bv. zoeken op een combinatie van een auteursnaam (auteur), een jaartal (jaar) en een documenttype.
Boekenmand
Nuttige resultaten kan je aanvinken en toevoegen aan een mandje. De inhoud hiervan kan je exporteren of afdrukken (naar bv. PDF).
RSS
Op de hoogte blijven van nieuw toegevoegde publicaties binnen uw interessegebied? Dit kan door een RSS-feed (?) te maken van jouw zoekopdracht.
nieuwe zoekopdracht
one publication added to basket [199479] |
Super-ensemble techniques applied to wave forecast: performance and limitations
Lenartz, F.; Beckers, J.-M.; Chiggiato, J.; Mourre, B.; Troupin, C.; Vandenbulcke, L.; Rixen, M. (2010). Super-ensemble techniques applied to wave forecast: performance and limitations. Ocean Sci. 6(2): 595-604. dx.doi.org/10.5194/os-6-595-2010
In: Ocean Science. Copernicus: Göttingen. ISSN 1812-0784; e-ISSN 1812-0792
| |
Auteurs | | Top |
- Lenartz, F.
- Beckers, J.-M.
- Chiggiato, J.
- Mourre, B.
|
- Troupin, C.
- Vandenbulcke, L.
- Rixen, M.
|
|
Abstract |
Nowadays, several operational ocean wave forecasts are available for a same region. These predictions may considerably differ, and to choose the best one is generally a difficult task. The super-ensemble approach, which consists in merging different forecasts and past observations into a single multi-model prediction system, is evaluated in this study. During the DART06 campaigns organized by the NATO Undersea Research Centre, four wave forecasting systems were simultaneously run in the Adriatic Sea, and significant wave height was measured at six stations as well as along the tracks of two remote sensors. This effort provided the necessary data set to compare the skills of various multi-model combination techniques. Our results indicate that a super-ensemble based on the Kalman Filter improves the forecast skills: The bias during both the hindcast and forecast periods is reduced, and the correlation coefficient is similar to that of the best individual model. The spatial extrapolation of local results is not straightforward and requires further investigation to be properly implemented. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.