Over het archief
Het OWA, het open archief van het Waterbouwkundig Laboratorium heeft tot doel alle vrij toegankelijke onderzoeksresultaten van dit instituut in digitale vorm aan te bieden. Op die manier wil het de zichtbaarheid, verspreiding en gebruik van deze onderzoeksresultaten, alsook de wetenschappelijke communicatie maximaal bevorderen.
Dit archief wordt uitgebouwd en beheerd volgens de principes van de Open Access Movement, en het daaruit ontstane Open Archives Initiative.
Basisinformatie over ‘Open Access to scholarly information'.
one publication added to basket [382744] |
Water condensation zones around main sequence stars
Turbet, M.; Fauchez, T.J.; Leconte, J.; Bolmont, E.; Chaverot, G.; Forget, F.; Millour, E.; Selsis, F.; Charnay, B.; Ducrot, E.; Gillon, M.; Maurel, A.; Villanueva, G.L. (2023). Water condensation zones around main sequence stars. Astron. Astrophys. 679: A126. https://dx.doi.org/10.1051/0004-6361/202347539
In: Astronomy & Astrophysics (Les Ulis). EDP Sciences: Les Ulis. ISSN 0004-6361; e-ISSN 1432-0746, meer
| |
Author keywords |
planets and satellites: atmospheres; planets and satellites: terrestrial planets |
Auteurs | | Top |
- Turbet, M.
- Fauchez, T.J.
- Leconte, J.
- Bolmont, E.
- Chaverot, G.
|
- Forget, F.
- Millour, E.
- Selsis, F.
- Charnay, B.
|
- Ducrot, E.
- Gillon, M., meer
- Maurel, A.
- Villanueva, G.L.
|
Abstract |
Understanding the set of conditions that allow rocky planets to have liquid water on their surface, in the form of lakes, seas, or oceans, is a major scientific step in determining the fraction of planets potentially suitable for the emergence and development of life as we know it on Earth. This effort is also necessary to define and refine what is known as the habitable zone (HZ) in order to guide the search for exoplanets likely to harbor remotely detectable life forms. To date, most numerical climate studies on this topic have focused on the conditions necessary to maintain oceans, but not to form them in the first place. Here we use the three-dimensional Generic Planetary Climate Model, historically known as the LMD generic global climate model, to simulate water-dominated planetary atmospheres around different types of main sequence stars. The simulations are designed to reproduce the conditions of early ocean formation on rocky planets due to the condensation of the primordial water reservoir at the end of the magma ocean phase. We show that the incoming stellar radiation (ISR) required to form oceans by condensation is always drastically lower than that required to vaporize oceans. We introduce a water condensation limit, which lies at significantly lower ISR than the inner edge of the HZ calculated with three-dimensional numerical climate simulations. This difference is due to a behavior change of water clouds, from low-altitude dayside convective clouds to high-altitude nightside stratospheric clouds. Finally, we calculated the transit spectra, emission spectra, and thermal phase curves of TRAPPIST-1b, c, and d with H2O-rich atmospheres, and compared them to CO2 atmospheres and bare rock simulations. We show using these observables that JWST has the capability to probe steam atmospheres on low-mass planets, and could possibly test the existence of nightside water clouds.
|
IMIS is ontwikkeld en wordt gehost door het VLIZ.