Over het archief
Het OWA, het open archief van het Waterbouwkundig Laboratorium heeft tot doel alle vrij toegankelijke onderzoeksresultaten van dit instituut in digitale vorm aan te bieden. Op die manier wil het de zichtbaarheid, verspreiding en gebruik van deze onderzoeksresultaten, alsook de wetenschappelijke communicatie maximaal bevorderen.
Dit archief wordt uitgebouwd en beheerd volgens de principes van de Open Access Movement, en het daaruit ontstane Open Archives Initiative.
Basisinformatie over ‘Open Access to scholarly information'.
[ meld een fout in dit record ] | mandje (1): toevoegen | toon |
one publication added to basket [365920] | |
Machine learning in marine ecology: An overview of techniques and applications Rubbens, P.; Brodie, S.; Cordier, T.; Barcellos, D.D.; Devos, P.; Fernandes-Salvador, J.A.; Fincham, J.I.; Gomes, A.; Handegard, N.O.; Howell, K.; Jamet, C.; Kartveit, K.H.; Moustahfid, H.; Parcerisas, C.; Politikos, D.; Sauzède, R.; Sokolova, M.; Uusitalo, L.; Van den Bulcke, L.; van Helmond, A.T.M.; Watson, J.T.; Welch, H.; Beltran-Perez, O.; Chaffron, S.; Greenberg, D.S.; Kühn, B.; Kiko, R.; Lo, M.; Lopes, R.M.; Möller, K.O.; Michaels, W.; Pala, A.; Romagnan, J.-B.; Schuchert, P.; Seydi, V.; Villasante, S.; Malde, K.; Irisson, J.-O. (2023). Machine learning in marine ecology: An overview of techniques and applications. ICES J. Mar. Sci./J. Cons. int. Explor. Mer 80(7): 1829-1853. https://dx.doi.org/10.1093/icesjms/fsad100
In: ICES Journal of Marine Science. Academic Press: London. ISSN 1054-3139; e-ISSN 1095-9289, meer
|
Beschikbaar in | Auteurs |
|
Trefwoorden |
Machine learning Physics > Acoustics Profiles Remote sensing Marien/Kust |
Author keywords |
|
Project | Top | Auteurs |
|
Auteurs | Top | |
|
Abstract |
|
Top | Auteurs |