Over het archief
Het OWA, het open archief van het Waterbouwkundig Laboratorium heeft tot doel alle vrij toegankelijke onderzoeksresultaten van dit instituut in digitale vorm aan te bieden. Op die manier wil het de zichtbaarheid, verspreiding en gebruik van deze onderzoeksresultaten, alsook de wetenschappelijke communicatie maximaal bevorderen.
Dit archief wordt uitgebouwd en beheerd volgens de principes van de Open Access Movement, en het daaruit ontstane Open Archives Initiative.
Basisinformatie over ‘Open Access to scholarly information'.
one publication added to basket [352758] |
Inspection and maintenance planning for offshore wind structural components: integrating fatigue failure criteria with Bayesian networks and Markov decision processes
Hlaing, N.; Morato, P.G.; Nielsen, J.S.; Amirafshari, P.; Kolios, A.; Rigo, P. (2022). Inspection and maintenance planning for offshore wind structural components: integrating fatigue failure criteria with Bayesian networks and Markov decision processes. Structure and Infrastructure Engineering 18(7): 983-1001. https://dx.doi.org/10.1080/15732479.2022.2037667
In: Structure and Infrastructure Engineering. TAYLOR & FRANCIS LTD: Abingdon. ISSN 1573-2479; e-ISSN 1744-8980, meer
| |
Trefwoord |
|
Author keywords |
Offshore wind turbines; inspection and maintenance planning; fracture mechanics; failure criteria; failure assessment diagram; partially observable Markov decision processes |
Auteurs | | Top |
- Hlaing, N., meer
- Morato, P.G., meer
- Nielsen, J.S.
|
- Amirafshari, P.
- Kolios, A.
- Rigo, P., meer
|
|
Abstract |
Exposed to the cyclic action of wind and waves, offshore wind structures are subject to fatigue deterioration processes throughout their operational life, therefore constituting a structural failure risk. In order to control the risk of adverse events, physics-based deterioration models, which often contain significant uncertainties, can be updated with information collected from inspections, thus enabling decision-makers to dictate more optimal and informed maintenance interventions. The identified decision rules are, however, influenced by the deterioration model and failure criterion specified in the formulation of the pre-posterior decision-making problem. In this paper, fatigue failure criteria are integrated with Bayesian networks and Markov decision processes. The proposed methodology is implemented in the numerical experiments, specified with various crack growth models and failure criteria, for the optimal management of an offshore wind structural detail under fatigue deterioration. Within the experiments, the crack propagation, structural reliability estimates, and the optimal policies derived through heuristics and partially observable Markov decision processes (POMDPs) are thoroughly analysed, demonstrating the capability of failure assessment diagram to model the structural redundancy in offshore wind substructures, as well as the adaptability of POMDP policies. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.