Over het archief
Het OWA, het open archief van het Waterbouwkundig Laboratorium heeft tot doel alle vrij toegankelijke onderzoeksresultaten van dit instituut in digitale vorm aan te bieden. Op die manier wil het de zichtbaarheid, verspreiding en gebruik van deze onderzoeksresultaten, alsook de wetenschappelijke communicatie maximaal bevorderen.
Dit archief wordt uitgebouwd en beheerd volgens de principes van de Open Access Movement, en het daaruit ontstane Open Archives Initiative.
Basisinformatie over ‘Open Access to scholarly information'.
one publication added to basket [338040] |
Advanced vibration signal procesing using edge computing to monitor wind turbine drivetrains
Peeters, C.; Verstraeten, T.; Nowé, A.; Daems, P.-J.; Helsen, J. (2019). Advanced vibration signal procesing using edge computing to monitor wind turbine drivetrains, in: ASME 2019 2nd International Offshore Wind Technical Conference. pp. 6
In: (2019). ASME 2019 2nd International Offshore Wind Technical Conference. American Society of Mechanical Engineers (ASME): New York. ISBN 978-0-7918-5935-3. 434 pp., meer
|
Beschikbaar in | Auteurs |
|
Documenttype: Congresbijdrage
|
Auteurs | | Top |
- Peeters, C.
- Verstraeten, T., meer
- Nowé, A.
|
|
|
Abstract |
This paper illustrates an integrated monitoring approach for wind turbines exploiting this Industry 4.0 context. Our combined edge-cloud processing approach is documented. We show edge processing of vibration data captured on a wind turbine gearbox to extract diagnostic features. Focus is on statistical indicators. Real-life signals collected on an offshore turbine are used to illustrate the concept of local processing. The NVIDIA Jetson platform serves as edge computation medium. Furthermore, we show an integrated failure detection and fault severity assessment at the cloud level. Health assessment and fault localization combines state-of-the-art vibration signal processing on high frequency data (10kHz and higher) with machine learning models to allow anomaly detection for each processing pipeline. Again this is illustrated using data from an offshore wind farm. Additionally, the fact that data of similar wind turbines in the farm is collected allows for exploiting system similarity over the fleet. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.