Over het archief
Het OWA, het open archief van het Waterbouwkundig Laboratorium heeft tot doel alle vrij toegankelijke onderzoeksresultaten van dit instituut in digitale vorm aan te bieden. Op die manier wil het de zichtbaarheid, verspreiding en gebruik van deze onderzoeksresultaten, alsook de wetenschappelijke communicatie maximaal bevorderen.
Dit archief wordt uitgebouwd en beheerd volgens de principes van de Open Access Movement, en het daaruit ontstane Open Archives Initiative.
Basisinformatie over ‘Open Access to scholarly information'.
one publication added to basket [337396] |
Probabilistic topic modelling in food spoilage analysis: a case study with Atlantic salmon (Salmo solar)
Kuuliala, L.; Pérez-Fernández, R.; Tang, M.; Vanderroost, M.; De Baets, B.; Devlieghere, F. (2021). Probabilistic topic modelling in food spoilage analysis: a case study with Atlantic salmon (Salmo solar). Intern. J. Food Microbiol. 337: 108955. https://hdl.handle.net/10.1016/j.ijfoodmicro.2020.108955
In: International Journal of Food Microbiology. Elsevier: Amsterdam. ISSN 0168-1605; e-ISSN 1879-3460, meer
| |
Author keywords |
Latent Dirichlet Allocation; Food quality; Metabolomics; Potential spoilage indicator; Volatile organic compound |
Abstract |
Probabilistic topic modelling is frequently used in machine learning and statistical analysis for extracting latent information from complex datasets. Despite being closely associated with natural language processing and text mining, these methods possess several properties that make them particularly attractive in metabolomics applications where the applicability of traditional multivariate statistics tends to be limited. The aim of the study was thus to introduce probabilistic topic modelling – more specifically, Latent Dirichlet Allocation (LDA) – in a novel experimental context: volatilome-based (sea) food spoilage characterization. This was realized as a case study, focusing on modelling the spoilage of Atlantic salmon (Salmo salar) at 4 °C under different gaseous atmospheres (% CO2/O2/N2): 0/0/100 (A), air (B), 60/0/40 (C) or 60/40/0 (D). First, an exploratory analysis was performed to optimize the model tunings and to consequently model salmon spoilage under 100% N2 (A). Based on the obtained results, a systematic spoilage characterization protocol was established and used for identifying potential volatile spoilage indicators under all tested storage conditions. In conclusion, LDA could be used for extracting sets of underlying VOC profiles and identifying those signifying salmon spoilage, giving rise to an extensive discussion regarding the key points associated with model tuning and/or spoilage analysis. The identified compounds were well in accordance with a previously established approach based on partial least squares regression analysis (PLS). Overall, the outcomes of the study not only reflect the promising potential of LDA in spoilage characterization, but also provide several new insights into the development of data-driven methods for food quality analysis. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.