Over het archief
Het OWA, het open archief van het Waterbouwkundig Laboratorium heeft tot doel alle vrij toegankelijke onderzoeksresultaten van dit instituut in digitale vorm aan te bieden. Op die manier wil het de zichtbaarheid, verspreiding en gebruik van deze onderzoeksresultaten, alsook de wetenschappelijke communicatie maximaal bevorderen.
Dit archief wordt uitgebouwd en beheerd volgens de principes van de Open Access Movement, en het daaruit ontstane Open Archives Initiative.
Basisinformatie over ‘Open Access to scholarly information'.
[ meld een fout in dit record ] | mandje (1): toevoegen | toon |
one publication added to basket [334828] | |
Controlling CaCO3 Particle Size with {Ca2+}:{CO32–} Ratios in Aqueous Environments Seepma, S.Y.M.H.; Ruiz-Hernandez, S.E.; Nehrke, G.; Soetaert, K.; Philipse, A.P.; Kuipers, B.W.M.; Wolthers, M. (2021). Controlling CaCO3 Particle Size with {Ca2+}:{CO32–} Ratios in Aqueous Environments. Crystal Growth & Design 21(3): 1576-1590. https://doi.org/10.1021/acs.cgd.0c01403
In: Crystal Growth & Design. AMER CHEMICAL SOC: Washington. ISSN 1528-7483; e-ISSN 1528-7505, meer
|
Beschikbaar in | Auteurs |
Auteurs | Top | |
|
|
Abstract |
The effect of stoichiometry on the new formation and subsequent growth of CaCO3 was investigated over a large range of solutionstoichiometries (10–4 < raq < 104, where raq = {Ca2+}:{CO 32–}) at various, initially constant degrees of supersaturation (30 < Ωcal < 200, where Ωcal = {Ca2+}{CO32–}/Ksp), pHof 10.5 ± 0.27, and ambient temperature and pressure. At r aq = 1 and Ωcal < 150, dynamic light scattering (DLS) showed that ion adsorption onto nuclei (1–10 nm) was the dominant mechanism. At higher supersaturation levels, no continuum of particle sizes is observed with time, suggesting aggregation of prenucleation clustersinto larger particles as the dominant growth mechanism. At r aq ≠ 1 (Ωcal = 100), prenucleation particles remained smaller than 10 nm for up to 15 h. Cross-polarized light in optical light microscopy was used to measure the time needed for new particle formation and growth to at least 20 μm. This precipitation time depends strongly and asymmetrically on raq. Complementary molecular dynamics(MD) simulations confirm that raq affects CaCO3 nanoparticle formation substantially. At r aq = 1 and Ωcal ≫ 1000, the largest nanoparticle in the system had a 21–68% larger gyration radius after 20 ns of simulationtime than in nonstoichiometric systems. Our results imply that, besides Ω cal, stoichiometry affects particle size, persistence, growth time, and ripening time toward micrometer-sized crystals. Our results mayhelp us to improve the understanding, prediction, and formation of CaCO 3 in geological, industrial, and geo-engineering settings. |
Top | Auteurs |