Over het archief
Het OWA, het open archief van het Waterbouwkundig Laboratorium heeft tot doel alle vrij toegankelijke onderzoeksresultaten van dit instituut in digitale vorm aan te bieden. Op die manier wil het de zichtbaarheid, verspreiding en gebruik van deze onderzoeksresultaten, alsook de wetenschappelijke communicatie maximaal bevorderen.
Dit archief wordt uitgebouwd en beheerd volgens de principes van de Open Access Movement, en het daaruit ontstane Open Archives Initiative.
Basisinformatie over ‘Open Access to scholarly information'.
one publication added to basket [305121] |
Phosphate loading alters schwertmannite transformation rates and pathways during microbial reduction
Schoepfer, V.A.; Burton, E.D.; Johnston, S.G.; Kraal, P. (2019). Phosphate loading alters schwertmannite transformation rates and pathways during microbial reduction. Sci. Total Environ. 657: 770-780. https://doi.org/10.1016/j.scitotenv.2018.12.082
In: Science of the Total Environment. Elsevier: Amsterdam. ISSN 0048-9697; e-ISSN 1879-1026, meer
| |
Author keywords |
Acid sulfate systems; Green rust; Stability; Microbial reduction; X-ray diffractometry; X-ray spectroscopy |
Auteurs | | Top |
- Schoepfer, V.A.
- Burton, E.D.
- Johnston, S.G.
- Kraal, P., meer
|
|
|
Abstract |
Acid sulfate systems commonly contain the metastable ferric oxyhydroxysulfate mineral schwertmannite, as well as phosphate (PO3−4) - a nutrient that causes eutrophication when present in excess. However, acid sulfate systems often experience reducing conditions that destabilize schwertmannite. Under such conditions, the longterm fate of both schwertmannite and PO3−4 may be influenced by interactions during microbially-mediated Fe (III) and SO2-4 reduction. This study investigates the influence of PO3−4 on Fe(III) and SO2-4 reduction and the subsequentmineralogical transformation(s) in schwertmannite-rich systems exposed to reducing conditions. To accomplish this, varied PO3−4 loadings were established in microbially-inoculated schwertmannite suspensions that were incubated under anoxic conditions for 82 days. Increased PO3−4 attenuated the onset of microbial Fe (III) reduction. This delayed consequent pH increases, which in turn had cascading effects on the initiation of SO2-4 reduction and subsequent mineral species formed. Under zero PO3−4 loading, goethite (αFeOOH) formed first, followed by mackinawite (FeS) and siderite (FeCO3). In contrast, in higher PO3−4 treatments, vivianite(Fe3(PO4)2) and/or sulfate green rust (FeII4 FeIII2(OH)12SO4) became increasingly important over time at the expense of goethite and mackinawite compared to PO3−4- free conditions. The findings imply that PO3−4 loading alters the rates and onset of microbial Fe(III)- and SO2-4 - reduction and the subsequent formation of secondary Febearing phases. In addition, schwertmannite reduction and the associated mineralogical evolution under anoxic conditions appears to sequester large quantities of PO3−4 in the form of green rusts and vivianite. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.