Over het archief
Het OWA, het open archief van het Waterbouwkundig Laboratorium heeft tot doel alle vrij toegankelijke onderzoeksresultaten van dit instituut in digitale vorm aan te bieden. Op die manier wil het de zichtbaarheid, verspreiding en gebruik van deze onderzoeksresultaten, alsook de wetenschappelijke communicatie maximaal bevorderen.
Dit archief wordt uitgebouwd en beheerd volgens de principes van de Open Access Movement, en het daaruit ontstane Open Archives Initiative.
Basisinformatie over ‘Open Access to scholarly information'.
one publication added to basket [211579] |
Deep-water circulation: processes & products (16-18 June 2010, Baiona): introduction and future challenges
Hernández-Molina, F. J.; Stow, D. A. V.; Llave, E.; Rebesco, M.; Ercilla, G.; Van Rooij, D.; Mena, A.; Vázquez, J.-T.; Voelker, A. H. L. (2011). Deep-water circulation: processes & products (16-18 June 2010, Baiona): introduction and future challenges. Geo-Mar. Lett. 31(5-6): 285-300. dx.doi.org/10.1007/s00367-011-0261-z
In: Geo-Marine Letters. Springer: Heidelberg; Berlin. ISSN 0276-0460; e-ISSN 1432-1157, meer
| |
Auteurs | | Top |
- Hernández-Molina, F. J.
- Stow, D. A. V.
- Llave, E.
|
- Rebesco, M., meer
- Ercilla, G.
- Van Rooij, D., meer
|
- Mena, A.
- Vázquez, J.-T.
- Voelker, A. H. L.
|
Abstract |
Deep-water circulation is a critical part of the global conveyor belt that regulates Earth’s climate. The bottom (contour)-current component of this circulation is of key significance in shaping the deep seafloor through erosion, transport, and deposition. As a result, there exists a high variety of large-scale erosional and depositional features (drifts) that together form more complex contourite depositional systems on continental slopes and rises as well as in ocean basins, generated by different water masses flowing at different depths and at different speeds either in the same or in opposite directions. Yet, the nature of these deep-water processes and the deposited contourites is still poorly understood in detail. Their ultimate decoding will undoubtedly yield information of fundamental importance to the earth and ocean sciences. The international congress Deep-water Circulation: Processes & Products was held from 16–18 June 2010 in Baiona, Spain, hosted by the University of Vigo. Volume 31(5/6) of Geo-Marine Letters is a special double issue containing 17 selected contributions from the congress, guest edited by F.J. Hernández-Molina, D.A.V. Stow, E. Llave, M. Rebesco, G. Ercilla, D. Van Rooij, A. Mena, J.-T. Vázquez and A.H.L. Voelker. The papers and discussions at the congress and the articles in this special issue provide a truly multidisciplinary perspective of interest to both academic and industrial participants, contributing to the advancement of knowledge on deep-water bottom circulation and related processes, as well as contourite sedimentation. The multidisciplinary contributions (including geomorphology, tectonics, stratigraphy, sedimentology, paleoceanography, physical oceanography, and deep-water ecology) have demonstrated that advances in paleoceanographic reconstructions and our understanding of the ocean’s role in the global climate system depend largely on the feedbacks among disciplines. New insights into the link between the biota of deep-water ecosystems and bottom currents confirm the need for this field to be investigated and mapped in detail. Likewise, it is confirmed that deep-water contourites are not only of academic interest but also potential resources of economic value. Cumulatively, both the congress and the present volume serve to demonstrate that the role of bottom currents in shaping the seafloor has to date been generally underestimated, and that our understanding of such systems is still in its infancy. Future research on contourites, using new and more advanced techniques, should focus on a more detailed visualization of water-mass circulation and its variability, in order to decipher the physical processes involved and the associations between drifts and other common bedforms. Moreover, contourite facies models should be better established, including their associations with other deep-water sedimentary environments both in modern and ancient submarine domains. The rapid increase in deep-water exploration and the new deep-water technologies available to the oil industry and academic institutions will undoubtedly lead to spectacular advances in contourite research in terms of processes, morphology, sediment stacking patterns, facies, and their relationships with other deep-marine depositional systems. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.