Over het archief
Het OWA, het open archief van het Waterbouwkundig Laboratorium heeft tot doel alle vrij toegankelijke onderzoeksresultaten van dit instituut in digitale vorm aan te bieden. Op die manier wil het de zichtbaarheid, verspreiding en gebruik van deze onderzoeksresultaten, alsook de wetenschappelijke communicatie maximaal bevorderen.
Dit archief wordt uitgebouwd en beheerd volgens de principes van de Open Access Movement, en het daaruit ontstane Open Archives Initiative.
Basisinformatie over ‘Open Access to scholarly information'.
Low functional change despite high taxonomic turnover characterizes the Ulva microbiome across a 2000-km salinity gradient
van der Loos, L.M.; Steinhagen, S.; Stock, W.; Weinberger, F.; D'hondt, S.; Willems, A.; De Clerck, O. (2025). Low functional change despite high taxonomic turnover characterizes the Ulva microbiome across a 2000-km salinity gradient. Science Advances 11(3): eadr6070. https://dx.doi.org/10.1126/sciadv.adr6070
In: Science Advances. AAAS: New York. e-ISSN 2375-2548, meer
| |
Auteurs | | Top |
- van der Loos, L.M., meer
- Steinhagen, S.
- Stock, W., meer
- Weinberger, F.
|
|
|
Abstract |
The green seaweed Ulva relies on associated bacteria for morphogenesis and is an important model to study algal-bacterial interactions. Ulva-associated bacteria exhibit high turnover across environmental gradients, leading to the hypothesis that bacteria contribute to the acclimation potential of the host. However, the functional variation of these bacteria in relation to environmental changes remains unclear. We analyzed 91 Ulva samples across a 2000-kilometer Atlantic–Baltic Sea salinity gradient using metagenomic sequencing. Metabolic reconstruction of 639 metagenome-assembled genomes revealed widespread potential for carbon, nitrogen, sulfur, and vitamin metabolism. Although the R2 value for salinity explained 70% of taxonomic variation, it accounted only for 17% of functional variation. The limited variation was attributed to typical high-salinity bacteria exhibiting enrichment in genes for thiamine, pyridoxal, and betaine biosynthesis, which likely contribute to stress mitigation and osmotic homeostasis in response to salinity variations. Our results emphasize the importance of functional profiling to understand the seaweed holobiont and its collective response to environmental change. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.