Over het archief
Het OWA, het open archief van het Waterbouwkundig Laboratorium heeft tot doel alle vrij toegankelijke onderzoeksresultaten van dit instituut in digitale vorm aan te bieden. Op die manier wil het de zichtbaarheid, verspreiding en gebruik van deze onderzoeksresultaten, alsook de wetenschappelijke communicatie maximaal bevorderen.
Dit archief wordt uitgebouwd en beheerd volgens de principes van de Open Access Movement, en het daaruit ontstane Open Archives Initiative.
Basisinformatie over ‘Open Access to scholarly information'.
Minimal and hybrid hydrogenases are active from archaea
Greening, C.; Cabotaje, P.R.; Valentin A., L.E.; Leung, P.M.; Land, H.; Rodrigues-Oliveira, T.; Ponce-Toledo, R.I.; Senger, M.; Klamke, M.A.; Milton, M.; Lappan, R.; Mullen, S.; West-Roberts, J.; Mao, J.; Song, J.; Schoelmerich, M.; Stairs, C.W.; Schleper, C.; Grinter, R.; Spang, A.; Banfield, J.F.; Berggren, G. (2024). Minimal and hybrid hydrogenases are active from archaea. Cell 187(13): 3357-3372.e19. https://dx.doi.org/10.1016/j.cell.2024.05.032
In: Cell. Cell Press: Cambridge. ISSN 0092-8674; e-ISSN 1097-4172, meer
| |
Author keywords |
archaea; hydrogen; hydrogenase; anaerobic; eukaryogenesis |
Abstract |
Microbial hydrogen (H2) cycling underpins the diversity and functionality of diverse anoxic ecosystems. Among the three evolutionarily distinct hydrogenase superfamilies responsible, [FeFe] hydrogenases were thought to be restricted to bacteria and eukaryotes. Here, we show that anaerobic archaea encode diverse, active, and ancient lineages of [FeFe] hydrogenases through combining analysis of existing and new genomes with extensive biochemical experiments. [FeFe] hydrogenases are encoded by genomes of nine archaeal phyla and expressed by H2-producing Asgard archaeon cultures. We report an ultraminimal hydrogenase in DPANN archaea that binds the catalytic H-cluster and produces H2. Moreover, we identify and characterize remarkable hybrid complexes formed through the fusion of [FeFe] and [NiFe] hydrogenases in ten other archaeal orders. Phylogenetic analysis and structural modeling suggest a deep evolutionary history of hybrid hydrogenases. These findings reveal new metabolic adaptations of archaea, streamlined H2 catalysts for biotechnological development, and a surprisingly intertwined evolutionary history between the two major H2-metabolizing enzymes. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.