Over het archief
Het OWA, het open archief van het Waterbouwkundig Laboratorium heeft tot doel alle vrij toegankelijke onderzoeksresultaten van dit instituut in digitale vorm aan te bieden. Op die manier wil het de zichtbaarheid, verspreiding en gebruik van deze onderzoeksresultaten, alsook de wetenschappelijke communicatie maximaal bevorderen.
Dit archief wordt uitgebouwd en beheerd volgens de principes van de Open Access Movement, en het daaruit ontstane Open Archives Initiative.
Basisinformatie over ‘Open Access to scholarly information'.
Fleetwide data-enabled reliability improvement of wind turbines
Verstraeten, T.; Nowe, A.; Keller, J.; Guo, Y.; Sheng, S.W.; Helsen, J. (2019). Fleetwide data-enabled reliability improvement of wind turbines. Renew. Sust. Energ. Rev. 109: 428-437. https://dx.doi.org/10.1016/j.rser.2019.03.019
In: Renewable & Sustainable Energy Reviews. Elsevier/Elsevier Science: Oxford. ISSN 1364-0321; e-ISSN 1879-0690, meer
| |
Trefwoord |
|
Author keywords |
Wind turbine reliability; Data-enabled load analysis; Failure avoidance |
Auteurs | | Top |
- Verstraeten, T., meer
- Nowé, A., meer
- Keller, J.
|
- Guo, Y.
- Sheng, S.W.
- Helsen, J., meer
|
|
Abstract |
Wind farms are an indispensable driver toward renewable and nonpolluting energy resources. However, as ideal sites are limited, placement in remote and challenging locations results in higher logistics costs and lower average wind speeds. Therefore, it is critical to increase the reliability of the turbines to reduce maintenance costs. Robust implementation requires a thorough understanding of the loads subject to the turbine's control. Yet, such dynamically changing multidimensional loads are uncommon with other machinery, and generally underresearched. Therefore, a multitiered approach is proposed to investigate the load spectrum occurring in wind farms. Our approach relies on both fundamental research using controllable test rigs, as well as analyses of real-world loading conditions in high-frequency supervisory control and data acquisition data. A method is introduced to detect operational zones in wind farm data and link them with load distributions. Additionally, while focused research further investigates the load spectrum, a method is proposed that continuously optimizes the farm's control protocols without the need to fully understand the loads that occur. A case of gearbox failure is investigated based on a vast body of past experiments and suspect loads are identified. Starting from this evidence on the cause and effects of dynamic loads, the potential of our methods is shown by analyzing real-world farm loading conditions on a steady-state case of wake and developing a preventive row-based control protocol for a case of cascading emergency brakes induced by a storm. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.