Over het archief
Het OWA, het open archief van het Waterbouwkundig Laboratorium heeft tot doel alle vrij toegankelijke onderzoeksresultaten van dit instituut in digitale vorm aan te bieden. Op die manier wil het de zichtbaarheid, verspreiding en gebruik van deze onderzoeksresultaten, alsook de wetenschappelijke communicatie maximaal bevorderen.
Dit archief wordt uitgebouwd en beheerd volgens de principes van de Open Access Movement, en het daaruit ontstane Open Archives Initiative.
Basisinformatie over ‘Open Access to scholarly information'.
Assessment of impact resistance recovery in Ultra High-Performance Concrete through stimulated autogenous self-healing in various healing environments
Kannikachalam, N.P.; Peralta, P.S.M.; Snoeck, D.; De Belie, N.; Ferrara, L. (2023). Assessment of impact resistance recovery in Ultra High-Performance Concrete through stimulated autogenous self-healing in various healing environments. Cement and Concrete Composites 143: 105239. https://dx.doi.org/10.1016/j.cemconcomp.2023.105239
In: Cement and Concrete Composites. Elsevier: Barking. ISSN 0958-9465; e-ISSN 1873-393X, meer
| |
Author keywords |
Self-healing; Impact test; Ultra high-performance concrete; Crystalline admixture; Autogenous self-healing |
Auteurs | | Top |
- Kannikachalam, N.P., meer
- Peralta, P.S.M.
- Snoeck, D., meer
|
- De Belie, N., meer
- Ferrara, L.
|
|
Abstract |
Ultra High-Performance Concrete (UHPC) is widely acknowledged for its remarkable mechanical properties, owing to its compact microstructure. The response of UHPC to impact forces plays a vital role in ensuring the safety and longevity of structures, specifically in protective buildings, high-performance pavements and offshore concrete structures. In this context, this paper reports on an experimental investigation aimed at assessing the effects of stimulated autogenous self-healing of UHPC on the recovery of its performance under impact loadings. Drop weight tests were performed on UHPC slabs, with a 10 kg heavy impactor dropped from the height of 1 m on the centre of the specimens. Specimens were pre-cracked by repeated impacts up to 40% of their predetermined capacity. Pre-cracked specimens were exposed to different healing conditions, water submersion, 95% ± 5% RH, and wet/dry cycling (12/12 h) either in water or in a NaCl solution. Self-healing was evaluated through rebound height, elastic stiffness recovery, natural frequency, and laser displacement measurements. High-speed cameras and Digital Image Correlation were used to capture rebound height and crack formation. Performance was assessed at time 0, pre-damaging, 1, 2, and 4 months. After the healing period, all specimens were tested to failure. Specimens exhibited an increasing healing efficiency when moving from 95% ± 5% RH, over wet/dry cycling, to submerged conditions. Specimens healed continuously under submerged conditions exhibited a complete closure of surface cracks (50–150 μm) and an 80% recovery in natural frequency. Furthermore, they showed a more than 10% increase in stiffness and energy dissipation capacity after four months of healing. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.