Over het archief
Het OWA, het open archief van het Waterbouwkundig Laboratorium heeft tot doel alle vrij toegankelijke onderzoeksresultaten van dit instituut in digitale vorm aan te bieden. Op die manier wil het de zichtbaarheid, verspreiding en gebruik van deze onderzoeksresultaten, alsook de wetenschappelijke communicatie maximaal bevorderen.
Dit archief wordt uitgebouwd en beheerd volgens de principes van de Open Access Movement, en het daaruit ontstane Open Archives Initiative.
Basisinformatie over ‘Open Access to scholarly information'.
Post-spawning growth acceleration in fish as a result of reduced live weight and thus, increased food conversion efficiency
Pauly, D.; Froese, R.; Liang, C.; Müller, J.; Sorensen, P. (2023). Post-spawning growth acceleration in fish as a result of reduced live weight and thus, increased food conversion efficiency. Environ. Biol. Fish. 106: 2031-2043. https://dx.doi.org/10.1007/s10641-023-01482-2
In: Environmental Biology of Fishes. Junk: The Hague. ISSN 0378-1909; e-ISSN 1573-5133, meer
| |
Trefwoorden |
Respiration Gadus morhua Linnaeus, 1758 [WoRMS] Marien/Kust |
Author keywords |
Atlantic cod · Food conversion efficiency · Gill-Oxygen Limitation Theory (GOLT) · Somatic growth |
Abstract |
The conventional view of spawning in iteroparous bony fish, i.e., the “reproductive drain hypothesis,” is based on the observation that somatic growth (in length) slows down noticeably at approximately the time fish attain maturity, and hence the assumption is made that investment in gonadal development slows down growth. However, when this is translated as growth in weight, the weight at first maturity (or puberty) is usually smaller than the weight at which growth rate is highest, i.e., weight growth accelerates after first maturity. We solve this conundrum, with some emphasis on female cod (Gadus morhua), by proposing the hypothesis that the substantial loss of body mass experienced by fish as a result of spawning is quickly compensated for by increased somatic growth after the spawning period, notably because of the increase in food conversion efficiency resulting from a sudden loss of body weight, which necessarily leads to a large increase in relative oxygen supply via the gills. This is consistent with the argument developed elsewhere that declining relative oxygen supply by the gills, whose surface area cannot keep up with increasing body weight, is the reason for growth rate declining with weight in adult fish. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.