Over het archief
Het OWA, het open archief van het Waterbouwkundig Laboratorium heeft tot doel alle vrij toegankelijke onderzoeksresultaten van dit instituut in digitale vorm aan te bieden. Op die manier wil het de zichtbaarheid, verspreiding en gebruik van deze onderzoeksresultaten, alsook de wetenschappelijke communicatie maximaal bevorderen.
Dit archief wordt uitgebouwd en beheerd volgens de principes van de Open Access Movement, en het daaruit ontstane Open Archives Initiative.
Basisinformatie over ‘Open Access to scholarly information'.
[ meld een fout in dit record ] | mandje (0): toevoegen | toon |
Distinct dynamics of Vibrio parahaemolyticus populations in two farming models Yang, Q.; Wang, Q.; Wu, J.; Zhang, Y.; Wei, D.; Qu, B.; Liu, Y.; Fu, S. (2022). Distinct dynamics of Vibrio parahaemolyticus populations in two farming models. J. Appl. Microbiol. 133(3): 1146-1155. https://dx.doi.org/10.1111/jam.15217
In: Journal of Applied Microbiology. Blackwell Science: Oxford. ISSN 1364-5072; e-ISSN 1365-2672, meer
|
Beschikbaar in | Auteurs |
|
Trefwoord |
|
Author keywords |
|
Auteurs | Top | |
|
|
Abstract |
Despite the recent prosperity of shrimp cultivation in China, very little is known about how different shrimp farming models influence the dynamics of Vibrio parahaemolyticus populations and the antibiotic resistance of this bacterium. Methods and ResultsTo this end, we conducted continuous surveillance of V. parahaemolyticus on four farms over 3 years: two traditional shrimp farms with daily water exchange and two farms operated in the recirculating aquaculture systems (RAS). No antibiotics were used in these farms to exclude the potential impacts of antibiotics on the emergence of antibacterial resistance. Multilocus sequence typing was utilized to characterize the dynamics of V. parahaemolyticus populations. Whole-genome sequencing (WGS) was conducted to determine the representative sequence types (STs) at each farm. Results revealed that the population structure of V. parahaemolyticus remained stable over time in both RAS farms, with only nine and four STs observed at each. In contrast, annual replacement of V. parahaemolyticus populations was observed in traditional farms with 26 and 28 STs identified in rearing water. WGS of 50 isolates divided them into five clusters, of which ST917a isolates harboured a genomic island that disrupted the gene recA. Pair-wised genomic comparison of isolates from the same STs showed that they were genetically related but belonged to different clones associated with geographical distribution. ConclusionsThese results suggested that RAS presented a specific ecological niche by minimizing the water exchanges with the external environment. In contrast, traditional farming might pose a food safety issue by introducing new V. parahaemolyticus populations with antibiotic resistance genes. Significance and Impact of the StudyOur results expose the potential food safety issue associated with conventional agriculture and should encourage the development of preventive strategies to reduce the emergence of resistant V. parahaemolyticus populations. |
Top | Auteurs |