Over het archief
Het OWA, het open archief van het Waterbouwkundig Laboratorium heeft tot doel alle vrij toegankelijke onderzoeksresultaten van dit instituut in digitale vorm aan te bieden. Op die manier wil het de zichtbaarheid, verspreiding en gebruik van deze onderzoeksresultaten, alsook de wetenschappelijke communicatie maximaal bevorderen.
Dit archief wordt uitgebouwd en beheerd volgens de principes van de Open Access Movement, en het daaruit ontstane Open Archives Initiative.
Basisinformatie over ‘Open Access to scholarly information'.
Role of geochemical protoenzymes (geozymes) in primordial metabolism: specific abiotic hydride transfer by metals to the biological redox cofactor NAD+
Henriques Pereira, D.P.; Leethaus, J.; Beyazay, T.; Nascimento Vieira, A.; Kleinermanns, K.; Tüysüz, H.; Martin, W.F.; Preiner, M. (2022). Role of geochemical protoenzymes (geozymes) in primordial metabolism: specific abiotic hydride transfer by metals to the biological redox cofactor NAD+. The FEBS Journal 289(11): 3148-3162. https://dx.doi.org/10.1111/febs.16329
In: The FEBS Journal. Wiley-Blackwell: Oxford. ISSN 1742-464X; e-ISSN 1742-4658, meer
| |
Author keywords |
cofactors; electron donors; hydrogen; hydrogenase; NADH; origin of life; reduction; serpentinizing systems |
Auteurs | | Top |
- Henriques Pereira, D.P.
- Leethaus, J.
- Beyazay, T.
- Nascimento Vieira, A.
|
- Kleinermanns, K.
- Tüysüz, H.
- Martin, W.F.
- Preiner, M., meer
|
|
Abstract |
Hydrogen gas, H2, is generated in serpentinizing hydrothermal systems, where it has supplied electrons and energy for microbial communities since there was liquid water on Earth. In modern metabolism, H2 is converted by hydrogenases into organically bound hydrides (H–), for example, the cofactor NADH. It transfers hydrides among molecules, serving as an activated and biologically harnessed form of H2. In serpentinizing systems, minerals can also bind hydrides and could, in principle, have acted as inorganic hydride donors—possibly as a geochemical protoenzyme, a ‘geozyme’— at the origin of metabolism. To test this idea, we investigated the ability of H2 to reduce NAD+ in the presence of iron (Fe), cobalt (Co) and nickel (Ni), metals that occur in serpentinizing systems. In the presence of H2, all three metals specifically reduce NAD+ to the biologically relevant form, 1,4-NADH, with up to 100% conversion rates within a few hours under alkaline aqueous conditions at 40 °C. Using Henry's law, the partial pressure of H2 in our reactions corresponds to 3.6 mm, a concentration observed in many modern serpentinizing systems. While the reduction of NAD+ by Ni is strictly H2-dependent, experiments in heavy water (2H2O) indicate that native Fe can reduce NAD+ both with and without H2. The results establish a mechanistic connection between abiotic and biotic hydride donors, indicating that geochemically catalysed, H2-dependent NAD+ reduction could have preceded the hydrogenase-dependent reaction in evolution. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.