Over het archief
Het OWA, het open archief van het Waterbouwkundig Laboratorium heeft tot doel alle vrij toegankelijke onderzoeksresultaten van dit instituut in digitale vorm aan te bieden. Op die manier wil het de zichtbaarheid, verspreiding en gebruik van deze onderzoeksresultaten, alsook de wetenschappelijke communicatie maximaal bevorderen.
Dit archief wordt uitgebouwd en beheerd volgens de principes van de Open Access Movement, en het daaruit ontstane Open Archives Initiative.
Basisinformatie over ‘Open Access to scholarly information'.
The complex provenance of Cu-binding ligands in the South-East Atlantic
Zitoun, R.; Achterberg, E.P.; Browning, T.J.; Hoffmann, L.J.; Krisch, S.; Sander, S.G.; Koschinsky, A. (2021). The complex provenance of Cu-binding ligands in the South-East Atlantic. Mar. Chem. 237: 104047. https://dx.doi.org/10.1016/j.marchem.2021.104047
In: Marine Chemistry. Elsevier: Amsterdam. ISSN 0304-4203; e-ISSN 1872-7581, meer
| |
Author keywords |
GEOTRACES G08; Angola Basin; Cape Basin; Benguela upwelling; Organic ligands; Dissolved Cu; Cu speciation |
Auteurs | | Top |
- Zitoun, R., meer
- Achterberg, E.P.
- Browning, T.J.
- Hoffmann, L.J.
|
- Krisch, S.
- Sander, S.G.
- Koschinsky, A.
|
|
Abstract |
Organic ligands play a key role in the marine biogeochemical cycle of copper (Cu), a bio-essential element, regulating its solubility and bioavailability . However, the sources, abundance, and distribution of these ligands are still poorly understood. In this study, we examined vertical Cu speciation profiles from the South-East Atlantic (GEOTRACES section GA08). Profiles were collected from a range of ocean conditions, including the Benguela upwelling region, the oligotrophic South Atlantic Gyre , and the Congo River outflow. In general, the lack of a significant correlation between most of the parameters assessed here with Cu speciation data obscures the provenance of Cu-binding ligands, suggesting that Cu speciation in the South-East Atlantic is influenced by a complex interplay between biotic and abiotic processes. Nevertheless, the total dissolved Cu (CuT) illustrated an allochthonous origin in the working area, while Cu-binding ligands showed both an allochthonous and a biogenic, autochthonous origin. Pigment concentrations showed that the phylogeography of different microorganisms influenced the spatial features of the Cu-binding ligand pool in the South-East Atlantic. Allochthonous Cu-binding ligand sources in the upper water column are likely associated with dissolved organic matter which originated from the Congo River and the Benguela upwelling system. Deep water ligand sources could include refractory dissolved organic carbon (DOC), resuspended benthic inputs, and lateral advected inputs from the shelf margin. The degradation of L1-type ligands and/or siderophores in low oxygen conditions may also be a source of L2-type ligands in the deep. Free Cu ion levels (1.7 to 156 fM), the biologically available form of CuT, were below the putative biolimiting threshold of many marine organisms. Two classes of ligands were found in this study with total ligand concentrations ([LT]) ranging from 2.5 to 283.0 nMand conditional stability constants (logKCuL, Cu2+ cond) ranging from 10.7 to 14.6. The Cu speciation values were spatially variable across the three subregions, suggesting that biogeochemical processes and sources strongly influence Cu speciation.
|
IMIS is ontwikkeld en wordt gehost door het VLIZ.