Over het archief
Het OWA, het open archief van het Waterbouwkundig Laboratorium heeft tot doel alle vrij toegankelijke onderzoeksresultaten van dit instituut in digitale vorm aan te bieden. Op die manier wil het de zichtbaarheid, verspreiding en gebruik van deze onderzoeksresultaten, alsook de wetenschappelijke communicatie maximaal bevorderen.
Dit archief wordt uitgebouwd en beheerd volgens de principes van de Open Access Movement, en het daaruit ontstane Open Archives Initiative.
Basisinformatie over ‘Open Access to scholarly information'.
Feedbacks between hydrodynamics and cold-water coral mound development
van der Kaaden, A.-S.; Mohn, C.; Gerkema, T.; Maier, S.R.; de Froe, E.; van de Koppel, J.; Rietkerk, M.; Soetaert, K.; van Oevelen, D. (2021). Feedbacks between hydrodynamics and cold-water coral mound development. Deep-Sea Res., Part 1, Oceanogr. Res. Pap. 178: 103641. https://dx.doi.org/10.1016/j.dsr.2021.103641
Bijhorende data:
In: Deep-Sea Research, Part I. Oceanographic Research Papers. Elsevier: Oxford. ISSN 0967-0637; e-ISSN 1879-0119, meer
| |
Author keywords |
Baroclinic internal tide; Cold-water coral mounds; Energy conversion rate; Permanent pycnocline; Benthic-pelagic coupling; Feedbacks |
Auteurs | | Top |
- van der Kaaden, A.-S., meer
- Mohn, C.
- Gerkema, T., meer
|
|
- Rietkerk, M.
- Soetaert, K., meer
- van Oevelen, D., meer
|
Abstract |
Cold-water corals rely on currents to transport food towards them and when external conditions are favourable, they can form coral mounds. These structures, which can be over 300 m high, influence the hydrodynamics around the reefs that grow on the mounds, which feeds back to affect coral- and therefore mound-growth. We investigated these feedbacks at the Logachev coral mound province, by running simulations with a 3D hydrodynamic model (Roms-Agrif), using different seafloor bathymetries that represent consecutive stages of mound development. Simulations ranged from a fully smoothened bathymetry without mounds, to a coral mound (Haas mound) at 1.5 times its current size. The effect of mound height on coral growth was investigated by looking at the baroclinic (internal) tide, turbulent energy dissipation, vertical velocities, and horizontal bottom currents. The simulations suggest that with increasing mound height horizontal velocities increase, while turbulent energy dissipation and vertical velocities around the mound foot decrease. This supposedly limits coral growth at the mound foot and hence lateral mound extension in later stages of development. An increase in turbulent energy dissipation and vertical velocities on the mound top and upper flanks, indicates vertical mound growth at all subsequent stages. Our findings of continued vertical mound growth provide an explanation for recently published data on benthic cover from a transect over Haas mound, that show a dominance of live corals on the mound top. We find areas of increased energy conversion rates from the barotropic (surface) to the baroclinic tide on the bathymetry where we artificially eliminated the mounds from (i.e. smoothened bathymetry). Interestingly, these areas overlap with the region where coral mounds are located at present. So, the baroclinic tide is likely an important mechanism in the process of coral mound establishment. Given the relative ease with which the energy conversion rate from the barotropic to the baroclinic tide can be deduced from hydrodynamic model simulations, our results provide opportunities to investigate where coral mounds may be initiated worldwide. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.