Over het archief
Het OWA, het open archief van het Waterbouwkundig Laboratorium heeft tot doel alle vrij toegankelijke onderzoeksresultaten van dit instituut in digitale vorm aan te bieden. Op die manier wil het de zichtbaarheid, verspreiding en gebruik van deze onderzoeksresultaten, alsook de wetenschappelijke communicatie maximaal bevorderen.
Dit archief wordt uitgebouwd en beheerd volgens de principes van de Open Access Movement, en het daaruit ontstane Open Archives Initiative.
Basisinformatie over ‘Open Access to scholarly information'.
Evaluation and comparison of data-driven and knowledge-supported Bayesian Belief Networks to assess the habitat suitability for alien macroinvertebrates
Boets, P.; Landuyt, D.; Everaert, G.; Broekx, S.; Goethals, P.L.M. (2015). Evaluation and comparison of data-driven and knowledge-supported Bayesian Belief Networks to assess the habitat suitability for alien macroinvertebrates. Environ. Model. Softw. 74: 92-103. https://dx.doi.org/10.1016/j.envsoft.2015.09.005
In: Environmental Modelling & Software. Elsevier: Oxford. ISSN 1364-8152; e-ISSN 1873-6726, meer
| |
Trefwoorden |
|
Author keywords |
Alien species; Habitat suitability; Model comparison; Risk assessment |
Abstract |
Defining habitats vulnerable to invasion is important to support the management of invasive alien species (IAS). We developed and applied data-driven and knowledge-supported data-driven Bayesian Belief Networks (BBNs) to assess the habitat suitability for alien gammarids. Data-driven model development using a Naive Bayes classifier and equal width discretization resulted in a habitat suitability model with a moderate technical performance (CCI = 68% K = 0.33). Although the structure of the knowledge-supported model yielded important ecological insight between environmental and biotic variables and the occurrence of alien gammarids, the performance was lower (CCI = 60% K = 0.19) compared to the purely data-driven model. The lower predictive performance of the knowledge-supported model may be attributed to its higher model complexity. Our study shows that BBNs can support the management of IAS as they are visually appealing, transparent models that facilitate integration of monitoring data and expert knowledge. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.