Over het archief
Het OWA, het open archief van het Waterbouwkundig Laboratorium heeft tot doel alle vrij toegankelijke onderzoeksresultaten van dit instituut in digitale vorm aan te bieden. Op die manier wil het de zichtbaarheid, verspreiding en gebruik van deze onderzoeksresultaten, alsook de wetenschappelijke communicatie maximaal bevorderen.
Dit archief wordt uitgebouwd en beheerd volgens de principes van de Open Access Movement, en het daaruit ontstane Open Archives Initiative.
Basisinformatie over ‘Open Access to scholarly information'.
A halocarbon survey from a seagrass dominated subtropical lagoon, Ria Formosa (Portugal): flux pattern and isotopic composition
Weinberg, I.; Bahlmann, E.; Eckhardt, T.; Michaelis, W.; Seifert, R. (2015). A halocarbon survey from a seagrass dominated subtropical lagoon, Ria Formosa (Portugal): flux pattern and isotopic composition. Biogeosciences 12(6): 1697-1711. https://dx.doi.org/10.5194/bg-12-1697-2015
In: Gattuso, J.P.; Kesselmeier, J. (Ed.) Biogeosciences. Copernicus Publications: Göttingen. ISSN 1726-4170; e-ISSN 1726-4189, meer
| |
Trefwoorden |
Environmental Managers & Monitoring Marine Sciences Marine Sciences > Oceanography Scientific Community Scientific Publication Marien/Kust |
Project | Top | Auteurs |
- Association of European marine biological laboratories, meer
|
Auteurs | | Top |
- Weinberg, I.
- Bahlmann, E.
- Eckhardt, T.
|
- Michaelis, W.
- Seifert, R.
|
|
Abstract |
In this study we report fluxes of chloromethane (CH3Cl), bromomethane (CH3Br), iodomethane (CH3I), and bromoform (CHBr3) from two sampling campaigns (summer and spring) in the seagrass dominated subtropical lagoon Ria Formosa, Portugal. Dynamic flux chamber measurements were performed when seagrass patches were either air-exposed or submerged. Overall, we observed highly variable fluxes from the seagrass meadows and attributed them to diurnal cycles, tidal effects, and the variety of possible sources and sinks in the seagrass meadows. The highest emissions with up to 130 nmol m−2 h−1 for CH3Br were observed during tidal changes, from air exposure to submergence and conversely. Furthermore, during the spring campaign, the emissions of halocarbons were significantly elevated during tidal inundation as compared to air exposure. Accompanying water sampling performed during both campaigns revealed elevated concentrations of CH3Cl and CH3Br, indicating productive sources within the lagoon. Stable carbon isotopes of halocarbons from the air and water phase along with source signatures were used to allocate the distinctive sources and sinks in the lagoon. Results suggest that CH3Cl was rather originating from seagrass meadows and water column than from salt marshes. Aqueous and atmospheric CH3Br was substantially enriched in 13C in comparison to source signatures for seagrass meadows and salt marshes. This suggests a significant contribution from the water phase on the atmospheric CH3Br in the lagoon.A rough global upscaling yields annual productions from seagrass meadows of 2.3–4.5 Gg yr−1, 0.5–1.0 Gg yr−1, 0.6–1.2 Gg yr−1, and 1.9–3.7 Gg yr−1 for CH3Cl, CH3Br, CH3I, and CHBr3 respectively. This suggests a minor contribution from seagrass meadows to the global production of CH3Cl and CH3Br with about 0.1 and 0.7%, respectively. In comparison to the known marine sources for CH3I and CHBr3, seagrass meadows are rather small sources. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.