- Dietrich, L.J.; Steen-Larsen, H.C.; Wahl, S.; Faber, A.K.; Fettweis, X. (2024). On the importance of the humidity flux for the surface mass balance in the accumulation zone of the Greenland Ice Sheet. Cryosphere 18(1): 289-305. https://dx.doi.org/10.5194/tc-18-289-2024, meer
- Luu, L.N.; Hanna, E.; de Alwis Pitts, D.; Maddison, J.; Screen, J.A.; Catto, J.L.; Fettweis, X. (2024). Greenland summer blocking characteristics: an evaluation of a high-resolution multi-model ensemble. Clim. Dyn. 62(12): 10503-10523. https://dx.doi.org/10.1007/s00382-024-07453-2, meer
- Ran, J.; Ditmar, P.; van den Broeke, M.R.; Liu, L.; Klees, R.; Khan, S.A.; Moon, T.; Li, J.; Bevis, M.; Zhong, M.; Fettweis, X.; Liu, J.; Noël, B.; Shum, C.K.; Chen, J.; Jiang, L.; van Dam, T. (2024). Vertical bedrock shifts reveal summer water storage in Greenland ice sheet. Nature (Lond.) 635(8037): 108-113. https://dx.doi.org/10.1038/s41586-024-08096-3, meer
- Akperov, M.; Eliseev, A.V.; Rinke, A.; Mokhov, I.I.; Semenov, V.A.; Dembitskaya, M.; Matthes, H.; Adakudlu, M.; Boberg, F.; Christensen, J.H.; Dethloff, K.; Fettweis, X.; Gutjahr, O.; Heinemann, G.; Koenigk, T.; Sein, D.; Laprise, R.; Mottram, R.; Nikiema, O.; Sobolowski, S.; Winger, K.; Zhang, W.X. (2023). Future projections of wind energy potentials in the arctic for the 21st century under the RCP8.5 scenario from regional climate models (Arctic-CORDEX). Anthropocene 44: 100402. https://dx.doi.org/10.1016/j.ancene.2023.100402, meer
- Box, J.E.; Nielsen, K.P.; Yang, X.; Niwano, M.; Wehrlé, A.; van As, D.; Fettweis, X.; Køltzow, M.A.Ø.; Palmason, B.; Fausto, R.S.; van den Broeke, M.R.; Huai, B.; Ahlstrom, A.P.; Langley, K.; Dachauer, A.; Noël, B. (2023). Greenland ice sheet rainfall climatology, extremes and atmospheric river rapids. Meteorol. Appl. 30(4): e2134. https://dx.doi.org/10.1002/met.2134, meer
- Gantayat, P.; Banwell, A.F.; Leeson, A.A.; Lea, J.M.; Petersen, D.; Gourmelen, N.; Fettweis, X. (2023). A new model for supraglacial hydrology evolution and drainage for the Greenland Ice Sheet (SHED v1.0). Geosci. Model Dev. 16(20): 5803-5823. https://dx.doi.org/10.5194/gmd-16-5803-2023, meer
- Mattingly, K.S.; Turton, J.V.; Wille, J.D.; Noël, B.; Fettweis, X.; Rennermalm, Å.K.; Mote, T.L. (2023). Increasing extreme melt in northeast Greenland linked to foehn winds and atmospheric rivers. Nature Comm. 14(1): 1743. https://dx.doi.org/10.1038/s41467-023-37434-8, meer
- Maure, D.; Kittel, C.; Lambin, C.; Delhasse, A.; Fettweis, X. (2023). Spatially heterogeneous effect of climate warming on the Arctic land ice. Cryosphere 17(11): 4645-4659. https://dx.doi.org/10.5194/tc-17-4645-2023, meer
- Otosaka, I.N.; Shepherd, A.; Ivins, E.R.; Schlegel, N.J.; Amory, C.; van den Broeke, M.R.; Horwath, M.; Joughin, I.; King, M.D.; Krinner, G.; Nowicki, S.; Payne, A.J.; Rignot, E.; Scambos, T.; Simon, K.M.; Smith, B.E.; Sorensen, L.S.; Velicogna, I.; Whitehouse, P.L.; Geruo, A.; Agosta, C.; Ahlstrom, A.P.; Blazquez, A.; Colgan, W.; Engdahl, M.E.; Fettweis, X.; Forsberg, R.; Gallee, H.; Gardner, A.; Gilbert, L.; Gourmelen, N.; Groh, A.; Gunter, B.C.; Harig, C.; Helm, V.; Khan, S.A.; Kittel, C.; Konrad, H.; Langen, P.L.; Lecavalier, B.S.; Liang, C.C.; Loomis, B.D.; McMillan, M.; Melini, D.; Mernild, S.H.; Mottram, R.; Mouginot, J.; Nilsson, J.; Noel, B.; Pattle, M.E.; Peltier, W.R.; Pie, N.; Roca, M.; Sasgen, I.; Save, H.V.; Seo, K.W.; Scheuchl, B.; Schrama, E.J.O.; Schroder, L.; Simonsen, S.B.; Slater, T.; Spada, G.; Sutterley, T.C.; Vishwakarma, B.D.; van Wessem, J.M.; Wiese, D.; van der Wal, W.; Wouters, B. (2023). Mass balance of the Greenland and Antarctic ice sheets from 1992 to 2020. ESSD 15(4): 1597-1616. https://dx.doi.org/10.5194/essd-15-1597-2023, meer
- Shu, Q.Y.; Killick, R.; Leeson, A.; Nemeth, C.; Fettweis, X.; Hogg, A.; Leslie, D. (2023). Characterising the ice sheet surface in Northeast Greenland using Sentinel-1 SAR data. J. Glaciol. First View: 12. https://dx.doi.org/10.1017/jog.2023.64, meer
- Tedesco, M.; Colosio, P.; Fettweis, X.; Cervone, G. (2023). A computationally efficient statistically downscaled 100 m resolution Greenland product from the regional climate model MAR. Cryosphere 17(12): 5061-5074. https://dx.doi.org/10.5194/tc-17-5061-2023, meer
- Box, J.E.; Hubbard, A.; Bahr, D.B.; Colgan, W.T.; Fettweis, X.; Mankoff, K.D.; Wehrlé, A.; Noël, B.; van den Broeke, M.R.; Wouters, B.; Björk, A.A.; Fausto, R.S. (2022). Greenland ice sheet climate disequilibrium and committed sea-level rise. Nat. Clim. Chang. 12(9): 808-813. https://dx.doi.org/10.1038/s41558-022-01441-2, meer
- Huot, P.-V.; Kittel, C.; Fichefet, T.; Jourdain, N.C.; Fettweis, X. (2022). Effects of ocean mesoscale eddies on atmosphere-sea ice-ocean interactions off Adelie Land, East Antarctica. Clim. Dyn. 59: 41-60. https://dx.doi.org/10.1007/s00382-021-06115-x, meer
- Kittel, C.; Amory, C.; Hofer, S.; Agosta, C.; Jourdain, N.C.; Gilbert, E.; Le Toumelin, L.; Vignon, E.; Gallee, H.; Fettweis, X. (2022). Clouds drive differences in future surface melt over the Antarctic ice shelves. Cryosphere 16(7): 2655-2669. https://dx.doi.org/10.5194/tc-16-2655-2022, meer
- Li, Y.; Yang, K.; Gao, S.; Smith, L.C.; Fettweis, X.; Li, M. (2022). Surface meltwater runoff routing through a coupled supraglacial-proglacial drainage system, Inglefield Land, northwest Greenland. International Journal of Applied Earth Observation and Geoinformation 106: 102647. https://dx.doi.org/10.1016/j.jag.2021.102647, meer
- Sasgen, I.; Salles, A.; Wegmann, M.; Wouters, B.; Fettweis, X.; Noël, B.P.Y.; Beck, C. (2022). Arctic glaciers record wavier circumpolar winds. Nat. Clim. Chang. 12(3): 249-255. https://dx.doi.org/10.1038/s41558-021-01275-4, meer
- Topál, D.; Ding, Q.; Ballinger, T.J.; Hanna, E.; Fettweis, X.; Li, Z.; Pieczka, I. (2022). Discrepancies between observations and climate models of large-scale wind-driven Greenland melt influence sea-level rise projections. Nature Comm. 13(1): 6833. https://dx.doi.org/10.1038/s41467-022-34414-2, meer
- van de Wal, R.S.W.; Nicholls, R.J.; Behar, D.; McInnes, K.; Stammer, D.; Lowe, J.A.; Church, J.A.; Deconto, R.; Fettweis, X.; Goelzer, H.; Haasnoot, M.; Haigh, I.D.; Hinkel, J.; Horton, B.P.; James, T.S.; Jenkins, A.; LeCozannet, G.; Levermann, A.; Lipscomb, W.H.; Marzeion, B.; Pattyn, F.; Payne, A.J.; Pfeffer, W.T.; Price, S.F.; Seroussi, H.; Sun, S.; Veatch, W.; White, K. (2022). A high-end estimate of sea level rise for practitioners. Earth's Future 10(11): e2022EF002751. https://dx.doi.org/10.1029/2022EF002751, meer
- Wille, J.D.; Favier, V.; Jourdain, N.C.; Kittel, C.; Turton, J.V.; Agosta, C.; Gorodetskaya, I.V.; Picard, G.; Codron, F.; Leroy-Dos Santos, C.; Amory, C.; Fettweis, X.; Blanchet, J.; Jomelli, V.; Berchet, A. (2022). Intense atmospheric rivers can weaken ice shelf stability at the Antarctic Peninsula. Commun. Earth Environ. 3: 90. https://dx.doi.org/10.1038/s43247-022-00422-9, meer
- Colosio, P.; Tedesco, M.; Ranzi, R.; Fettweis, X. (2021). Surface melting over the Greenland ice sheet derived from enhanced resolution passive microwave brightness temperatures (1979-2019). Cryosphere 15(6): 2623-2646. https://dx.doi.org/10.5194/tc-15-2623-2021, meer
- Diener, T.; Sasgen, I.; Agosta, C.; Fürst, J.J.; Braun, M.H.; Konrad, H.; Fettweis, X. (2021). Acceleration of dynamic ice loss in Antarctica from satellite gravimetry. Front. Earth Sci. 9: 741789. https://dx.doi.org/10.3389/feart.2021.741789, meer
- Edwards, T.L.; Nowicki, S.; Marzeion, B.; Hock, R.; Goelzer, H.; Seroussi, H.; Jourdain, N.C.; Slater, D.A.; Turner, F.E.; Smith, C.J.; McKenna, C.M.; Simon, E.; Abe-Ouchi, A.; Gregory, J.M.; Larour, E.; Lipscomb, W.H.; Payne, A.J.; Shepherd, A.; Agosta, C.; Alexander, P.; Albrecht, T.; Anderson, B.; Asay-Davis, X.; Aschwanden, A.; Barthel, A.; Bliss, A.; Calov, R.; Chambers, C.; Champollion, N.; Choi, Y.; Cullather, R.; Cuzzone, J.; Dumas, C.; Felikson, D.; Fettweis, X.; Fujita, K.; Galton-Fenzi, B.K.; Gladstone, R.; Golledge, N.R.; Greve, R.; Hattermann, T.; Hoffman, M.J.; Humbert, A.; Huss, M.; Huybrechts, P.; Immerzeel, W.; Kleiner, T.; Kraaijenbrink, P.; Le Clec'h, S.; Lee, V.; Leguy, G.R.; Little, C.M.; Lowry, D.P.; Malles, J.-H.; Martin, D.F.; Maussion, F.; Morlighem, M.; O’Neill, J.F.; Nias, I.; Pattyn, F.; Pelle, T.; Price, S.F.; Quiquet, A.; Radic, V.; Reese, R.; Rounce, D.R.; Rückamp, M.; Sakai, A.; Shafer, C.; Schlegel, N.-J.; Shannon, S.; Smith, R.S.; Straneo, F.; Sun, S.; Tarasov, L.; Trusel, L.D.; Van Breedam, J.; van de Wal, R.; van den Broeke, M.; Winkelmann, R.; Zekollari, H.; Zhao, C.; Zhang, T.; Zwinger, T. (2021). Projected land ice contributions to twenty-first-century sea level rise. Nature (Lond.) 593(7857): 74-82. https://hdl.handle.net/10.1038/s41586-021-03302-y, meer
- Hanna, E.; Cappelen, J.; Fettweis, X.; Mernild, S.H.; Mote, T.L.; Mottram, R.; Steffen, K.; Ballinger, T.J.; Hall, R. (2021). Greenland surface air temperature changes from 1981 to 2019 and implications for ice-sheet melt and mass-balance change. Int. J. Climatol. 41(51): E1336-E1352. https://hdl.handle.net/10.1002/joc.6771, meer
- Huot, P.-V.; Fichefet, T.; Jourdain, N.C.; Mathiot, P.; Rousset, C.; Kittel, C.; Fettweis, X. (2021). Influence of ocean tides and ice shelves on ocean-ice interactions and dense shelf water formation in the D'Urville Sea, Antarctica. Ocean Modelling 162: 101794. https://dx.doi.org/10.1016/j.ocemod.2021.101794, meer
- Huot, P.-V.; Kittel, C.; Fichefet, T.; Jourdain, N.C.; Sterlin, J.; Fettweis, X. (2021). Effects of the atmospheric forcing resolution on simulated sea ice and polynyas off Adelie Land, East Antarctica. Ocean Modelling 168: 101901. https://dx.doi.org/10.1016/j.ocemod.2021.101901, meer
- Inoue, J.; Sato, K.; Rinke, A.; Cassano, J.J.; Fettweis, X.; Heinemann, G.; Matthes, H.; Orr, A.; Phillips, T.; Seefeldt, M.; Solomon, A.; Webster, S. (2021). Clouds and radiation processes in regional climate models evaluated using observations over the ice-free Arctic ocean. JGR: Atmospheres 126(1): e2020JD033904. https://hdl.handle.net/10.1029/2020JD033904, meer
- Kittel, C.; Amory, C.; Agosta, C.; Jourdain, N.C.; Hofer, S.; Delhasse, A.; Doutreloup, S.; Huot, P.-V.; Lang, C.; Fichefet, T.; Fettweis, X. (2021). Diverging future surface mass balance between the Antarctic ice shelves and grounded ice sheet. Cryosphere 15(3): 1215-1236. https://hdl.handle.net/10.5194/tc-15-1215-2021, meer
- Le Toumelin, L.; Amory, C.; Favier, V.; Kittel, C.; Hofer, S.; Fettweis, X.; Gallee, H.; Kayetha, V. (2021). Sensitivity of the surface energy budget to drifting snow as simulated by MAR in coastal Adelie Land, Antarctica. Cryosphere 15(8): 3595-3614. https://dx.doi.org/10.5194/tc-15-3595-2021, meer
- Mankoff, K.D.; Fettweis, X.; Langen, P.L.; Stendel, M.; Kjeldsen, K.K.; Karlsson, N.B.; Noël, B.; van den Broeke, M.R.; Solgaard, A.; Colgan, W.; Box, J.E.; Simonsen, S.B.; King, M.D.; Ahlstrom, A.P.; Andersen, S.B.; Fausto, R.S. (2021). Greenland ice sheet mass balance from 1840 through next week. ESSD 13(10): 5001-5025. https://dx.doi.org/10.5194/essd-13-5001-2021, meer
- Mottram, R.; Hansen, N.; Kittel, C.; Van Wessem, J.M.; Agosta, C.; Amory, C.; Boberg, F.; van de Berg, W.J.; Fettweis, X.; Gossart, A.; van Lipzig, N.P.M.; van Meijgaard, E.; Orr, A.; Phillips, T.; Webster, S.; Simonsen, S.B.; Souverijns, N. (2021). What is the surface mass balance of Antarctica? An intercomparison of regional climate model estimates. Cryosphere 15(8): 3751-3784. https://dx.doi.org/10.5194/tc-15-3751-2021, meer
- Navari, M.; Margulis, S.A.; Tedesco, M.; Fettweis, X.; van de Wal, R.S.W. (2021). Reanalysis surface mass balance of the Greenland ice sheet along K-transect (2000-2014). Geophys. Res. Lett. 48(17): e2021GL094602. https://dx.doi.org/10.1029/2021GL094602, meer
- Payne, A.J.; Nowicki, S.; Abe-Ouchi, A.; Agosta, C.; Alexander, P.; Albrecht, T.; Asay-Davis, X.; Aschwanden, A.; Barthel, A.; Bracegirdle, T.J.; Calov, R.; Chambers, C.; Choi, Y.; Cullather, R.; Cuzzone, J.; Dumas, C.; Edwards, T.L.; Felikson, D.; Fettweis, X.; Galton-Fenzi, B.K.; Goelzer, H.; Gladstone, R.; Golledge, N.R.; Gregory, J.M.; Greve, R.; Hattermann, T.; Hoffman, M.J.; Humbert, A.; Huybrechts, P.; Jourdain, N.C.; Kleiner, T.; Kuipers Munneke, P.; Larour, E.; Le Clec'h, S.; Lee, V.; Leguy, G.; Lipscomb, W.H.; Little, C.M.; Lowry, D.P.; Morlighem, M.; Nias, I.; Pattyn, F.; Pelle, T.; Price, S.F.; Quiquet, A.; Reese, R.; Rückamp, M.; Schlegel, N.-J.; Seroussi, H.; Shepherd, A.; Simon, E.; Slater, D.; Smith, R.S.; Straneo, F.; Sun, S.; Tarasov, L.; Trusel, L.D.; Van Breedam, J.; van de Wal, R.; van den Broeke, M.; Winkelmann, R.; Zhao, C.; Zhang, T.; Zwinger, T. (2021). Future sea level change under coupled model intercomparison project phase 5 and phase 6 scenarios from the Greenland and Antarctic ice sheets. Geophys. Res. Lett. 48(16): e2020GL091741. https://dx.doi.org/10.1029/2020GL091741, meer
- Slater, T.; Shepherd, A.; McMillan, M.; Leeson, A.; Gilbert, L.; Muir, A.; Munneke, P.K.; Noël, B.; Fettweis, X.; van den Broeke, M.; Briggs, K. (2021). Increased variability in Greenland Ice Sheet runoff from satellite observations. Nature Comm. 12(1): 6069. https://dx.doi.org/10.1038/s41467-021-26229-4, meer
- Verjans, V.; Leeson, A.A.; McMillan, M.; Stevens, C.M.; van Wessem, J.M.; van de Berg, W.J.; van den Broeke, M.R.; Kittel, C.; Amory, C.; Fettweis, X.; Hansen, N.; Boberg, F.; Mottram, R. (2021). Uncertainty in East Antarctic firn thickness constrained using a model ensemble approach. Geophys. Res. Lett. 48(7): e2020GL092060. https://dx.doi.org/10.1029/2020GL092060, meer
- Donat-Magnin, M.; Jourdain, N.C.; Gallee, H.; Amory, C.; Kittel, C.; Fettweis, X.; Wille, J.D.; Favier, V.; Drira, A.; Agosta, C. (2020). Interannual variability of summer surface mass balance and surface melting in the Amundsen sector, West Antarctica. Cryosphere 14(1): 229-249. https://dx.doi.org/10.5194/tc-14-229-2020, meer
- Fettweis, X.; Hofer, S.; Krebs-Kanzow, U.; Amory, C.; Aoki, T.; Berends, C.J.; Born, A.; Box, J.E.; Delhasse, A.; Fujita, K.; Gierz, P.; Goelzer, H.; Hanna, E.; Hashimoto, A.; Huybrechts, P.; Kapsch, M.-L.; King, M.D.; Kittel, C.; Lang, C.; Langen, P.L.; Lenaerts, J.T.M.; Liston, G.E.; Lohmann, G.; Mernild, S.H.; Mikolajewicz, U.; Modali, K.; Mottram, R.H.; Niwano, M.; Noël, B.; Ryan, J.C.; Smith, A.; Streffing, J.; Tedesco, M.; van de Berg, W.J.; van den Broeke, M.; van de Wal, R.S.W.; van Kampenhout, L.; Wilton, D.; Wouters, B.; Ziemen, F.; Zolles, T. (2020). GrSMBMIP: intercomparison of the modelled 1980–2012 surface mass balance over the Greenland Ice Sheet. Cryosphere 14(11): 3935-3958. https://dx.doi.org/10.5194/tc-14-3935-2020, meer
- Goelzer, H.; Noël, B.P.Y.; Edwards, T.L.; Fettweis, X.; Gregory, J.M.; Lipscomb, W.H.; van de Wal, R.S.W.; van den Broeke, M.R. (2020). Remapping of Greenland ice sheet surface mass balance anomalies for large ensemble sea-level change projections. Cryosphere 14(6): 1747-1762. https://hdl.handle.net/10.5194/tc-14-1747-2020, meer
- Goelzer, H.; Nowicki, S.; Payne, A.; Larour, E.; Seroussi, H.; Lipscomb, W.H.; Gregory, J.; Abe-Ouchi, A.; Shepherd, A.; Simon, E.; Agosta, C.; Alexander, P.; Aschwanden, A.; Barthel, A.; Calov, R.; Chambers, C.R.; Choi, Y.; Cuzzone, J.; Dumas, C.; Edwards, T.; Felikson, D.; Fettweis, X.; Golledge, N.R.; Greve, R.; Humbert, A.; Huybrechts, P.; Le Clec'h, S.; Lee, V.; Leguy, G.; Little, C.; Lowry, D.P.; Morlighem, M.; Nias, I.; Quiquet, A.; Rückamp, M.; Schlegel, N.-J.; Slater, D.A.; Smith, R.S.; Straneo, F.; Tarasov, L.; van de Wal, R.; van den Broeke, M. (2020). The future sea-level contribution of the Greenland ice sheet: a multi-model ensemble study of ISMIP6. Cryosphere 14(9): 3071-3096. https://hdl.handle.net/10.5194/tc-14-3071-2020, meer
- Hofer, S.; Lang, C.; Amory, C.; Kittel, C.; Delhasse, A.; Tedstone, A.; Fettweis, X. (2020). Greater Greenland Ice Sheet contribution to global sea level rise in CMIP6. Nature Comm. 11(1): 6289. https://hdl.handle.net/10.1038/s41467-020-20011-8, meer
- Lu, Y.; Yang, K.; Lu, X.; Smith, L.C.; Sole, A.J.; Livingstone, S.J.; Fettweis, X.; Li, M. (2020). Diverse supraglacial drainage patterns on the Devon ice Cap, Arctic Canada. Journal of Maps 16(2): 834-846. https://hdl.handle.net/10.1080/17445647.2020.1838353, meer
- Nowicki, S.; Goelzer, H.; Seroussi, H.; Payne, A.J.; Lipscomb, W.H.; Abe-Ouchi, A.; Agosta, C.; Alexander, P.; Asay-Davis, X.S.; Barthel, A.; Bracegirdle, T.J.; Cullather, R.; Felikson, D.; Fettweis, X.; Gregory, J.M.; Hattermann, T.; Jourdain, N.C.; Munneke, P.K.; Larour, E.; Little, C.M.; Morlighem, M.; Nias, I.; Shepherd, A.; Simon, E.; Slater, D.; Smith, R.S.; Straneo, F.; Trusel, L.D.; van den Broeke, M.R.; van de Wal, R. (2020). Experimental protocol for sea level projections from ISMIP6 stand-alone ice sheet models. Cryosphere 14(7): 2331-2368. https://hdl.handle.net/10.5194/tc-14-2331-2020, meer
- Richter, K.; Meyssignac, B.; Slangen, A.B.A.; Melet, A.; Church, J.A.; Fettweis, X.; Marzeion, B.; Agosta, C.; Ligtenberg, S.R.M.; Spada, G.; Palmer, M.D.; Roberts, C.D.; Champollion, N. (2020). Detecting a forced signal in satellite-era sea-level change. Environ. Res. Lett. 15(9): 094079. https://dx.doi.org/10.1088/1748-9326/ab986e, meer
- Ryan, J.C.; Smith, L.C.; Wu, M.; Cooley, S.W.; Miège, C.; Montgomery, L.N.; Koenig, L.S.; Fettweis, X.; Noël, B.P.Y.; van den Broeke, M.R. (2020). Evaluation of CloudSat's cloud-profiling radar for mapping snowfall rates across the Greenland ice sheet. JGR: Atmospheres 125(4): e2019JD031411. https://hdl.handle.net/10.1029/2019JD031411, meer
- Sasgen, I.; Wouters, B.; Gardner, A.S.; King, M.D.; Tedesco, M.; Landerer, F.W.; Dahle, C.; Save, H.; Fettweis, X. (2020). Return to rapid ice loss in Greenland and record loss in 2019 detected by the GRACE-FO satellites. Commun. Earth Environ. 1(1): 8. https://dx.doi.org/10.1038/s43247-020-0010-1, meer
- Sedlar, J.; Tjernström, M.; Rinke, A.; Orr, A.; Cassano, J.; Fettweis, X.; Heinemann, G.; Seefeldt, M.; Solomon, A.; Matthes, H.; Phillips, T.; Webster, S. (2020). Confronting Arctic troposphere, clouds, and surface energy budget representations in regional climate models With observations. JGR: Atmospheres 125(6): e2019JD031783. https://hdl.handle.net/10.1029/2019JD031783, meer
- Slater, D.A.; Felikson, D.; Straneo, F.; Goelzer, H.; Little, C.M.; Morlighem, M.; Fettweis, X.; Nowicki, S. (2020). Twenty-first century ocean forcing of the Greenland ice sheet for modelling of sea level contribution. Cryosphere 14(3): 985-1008. https://hdl.handle.net/10.5194/tc-14-985-2020, meer
- Tedesco, M.; Fettweis, X. (2020). Unprecedented atmospheric conditions (1948-2019) drive the 2019 exceptional melting season over the Greenland ice sheet. Cryosphere 14(4): 1209-1223. https://hdl.handle.net/10.5194/tc-14-1209-2020, meer
- Wang, S.; Tedesco, M.; Alexander, P.; Xu, M.; Fettweis, X. (2020). Quantifying spatiotemporal variability of glacier algal blooms and the impact on surface albedo in southwestern Greenland. Cryosphere 14(8): 2687-2713. https://hdl.handle.net/10.5194/tc-14-2687-2020, meer
- Wyard, C.; Scholzen, C.; Doutreloup, S.; Hallot, E.; Fettweis, X. (2020). Future evolution of the hydroclimatic conditions favouring floods in the south‐east of Belgium by 2100 using a regional climate model. Int. J. Climatol. 41(1): 647-662. https://dx.doi.org/10.1002/joc.6642, meer
- Agosta, C.; Amory, C.; Kittel, C.; Orsi, A.; Favier, V.; Gallee, H.; van den Broeke, M.R.; Lenaerts, J.T.M.; van Wessem, J.M.; van de Berg, W.J.; Fettweis, X. (2019). Estimation of the Antarctic surface mass balance using the regional climate model MAR (1979-2015) and identification of dominant processes. Cryosphere 13(1): 281-296. https://dx.doi.org/10.5194/tc-13-281-2019, meer
- Akperov, M.; Rinke, A.; Mokhov, I.I.; Semenov, V.A.; Parfenova, M.R.; Matthes, H.; Adakudlu, M.; Boberg, F.; Christensen, J.H.; Dembitskaya, M.A.; Dethloff, K.; Fettweis, X.; Gutjahr, O.; Heinemann, G.; Koenigk, T.; Koldunov, N.V.; Laprise, R.; Mottram, R.; Nikiéma, O.; Sein, D.V.; Sobolowski, S.; Winger, K.; Zhang, W. (2019). Future projections of cyclone activity in the Arctic for the 21st century from regional climate models (Arctic-CORDEX). Global Planet. Change 182: 103005. https://hdl.handle.net/10.1016/j.gloplacha.2019.103005, meer
- Alexander, P.M.; LeGrande, A.N.; Fischer, E.; Tedesco, M.; Fettweis, X.; Kelley, M.; Nowicki, S.M.J.; Schmidt, G.A. (2019). Simulated Greenland Surface Mass Balance in the GISS ModelE2 GCM: role of the ice sheet surface. JGR: Earth Surface 124(3): 750-765. https://dx.doi.org/10.1029/2018JF004772, meer
- Alexander, P.M.; Tedesco, M.; Koenig, L.; Fettweis, X. (2019). Evaluating a regional climate model simulation of Greenland ice sheet snow and firn density for improved surface mass balance estimates. Geophys. Res. Lett. 46(21): 12073-12082. https://hdl.handle.net/10.1029/2019GL084101, meer
- Ballinger, T.J.; Mote, T.L.; Mattingly, K.; Bliss, A.C.; Hanna, E.; van As, D.; Prieto, M.; Gharehchahi, S.; Fettweis, X.; Noël, B.; Smeets, P.C.J.P.; Reijmer, C.H.; Ribergaard, M.H.; Cappelen, J. (2019). Greenland Ice Sheet late-season melt: investigating multiscale drivers of K-transect events. Cryosphere 13(8): 2241-2257. https://dx.doi.org/10.5194/tc-13-2241-2019, meer
- Colgan, W.; Mankoff, K.D.; Kjeldsen, K.K.; Björk, A.A.; Box, J.E.; Simonsen, S.B.; Sørensen, L.S.; Khan, S.A.; Solgaard, A.M.; Forsberg, R.; Skourup, H.; Stenseng, L.; Kristensen, S.S.; Hvidegaard, S.M.; Citterio, M.; Karlsson, N.; Fettweis, X.; Ahlstrom, A.P.; Andersen, S.B.; van As, D.; Fausto, R.S. (2019). Greenland ice sheet mass balance assessed by PROMICE (1995–2015). Geological Survey of Denmark and Greenland Bulletin 43: e2019430201. https://dx.doi.org/10.34194/geusb-201943-02-01, meer
- Hofer, S.; Tedstone, A.; Fettweis, X.; Bamber, J.L. (2019). Cloud microphysics and circulation anomalies control differences in future Greenland melt. Nat. Clim. Chang. 9(7): 523-528. https://dx.doi.org/10.1038/s41558-019-0507-8, meer
- Le Clec'h, S.; Charbit, S.; Quiquet, A.; Fettweis, X.; Dumas, C.; Kageyama, M.; Wyard, C.; Ritz, C. (2019). Assessment of the Greenland ice sheet–atmosphere feedbacks for the next century with a regional atmospheric model coupled to an ice sheet model. Cryosphere 13(1): 373-395. https://dx.doi.org/10.5194/tc-13-373-2019, meer
- MacFerrin, M.; Machguth, H.; van As, D.; Charalampidis, C.; Stevens, C.M.; Heilig, A.; Vandecrux, B.; Langen, P.L.; Mottram, R.; Fettweis, X.; van den Broeke, M.R.; Pfeffer, W.T.; Moussavi, M.S.; Abdalati, W. (2019). Rapid expansion of Greenland's low-permeability ice slabs. Nature (Lond.) 573(7774): 403-407. https://hdl.handle.net/10.1038/s41586-019-1550-3, meer
- Slater, D.A.; Straneo, F.; Felikson, D.; Little, C.M.; Goelzer, H.; Fettweis, X.; Holte, J. (2019). Estimating Greenland tidewater glacier retreat driven by submarine melting. Cryosphere 13(9): 2489-2509. https://dx.doi.org/10.5194/tc-13-2489-2019, meer
- The IMBIE Team (2019). Mass balance of the Greenland Ice Sheet from 1992 to 2018. Nature (Lond.) 579(7798): 233-239. https://dx.doi.org/10.1038/s41586-019-1855-2, meer
- Datta, R.T.; Tedesco, M.; Agosta, C.; Fettweis, X.; Munneke, P.K.; van den Broeke, M.R. (2018). Melting over the northeast Antarctic Peninsula (1999-2009): evaluation of a high-resolution regional climate model. Cryosphere 12(9): 2901-2922. https://dx.doi.org/10.5194/tc-12-2901-2018, meer
- Delhasse, A.; Fettweis, X.; Kittel, C.; Amory, C.; Agosta, C. (2018). Brief communication: Impact of the recent atmospheric circulation change in summer on the future surface mass balance of the Greenland Ice Sheet. Cryosphere 12(11): 3409-3418. https://dx.doi.org/10.5194/tc-12-3409-2018, meer
- Kittel, C.; Amory, C.; Agosta, C.; Delhasse, A.; Doutreloup, S.; Huot, P.-V.; Wyard, C.; Fichefet, T.; Fettweis, X. (2018). Sensitivity of the current Antarctic surface mass balance to sea surface conditions using MAR. Cryosphere 12(12): 3827-3839. https://dx.doi.org/10.5194/tc-12-3827-2018, meer
- Leeson, A.A.; Eastoe, E.; Fettweis, X. (2018). Extreme temperature events on Greenland in observations and the MAR regional climate model. Cryosphere 12(3): 1091-1102. https://hdl.handle.net/10.5194/tc-12-1091-2018, meer
- Mattingly, K.S.; Mote, T.L.; Fettweis, X. (2018). Atmospheric river impacts on Greenland ice sheet surface mass balance. JGR: Atmospheres 123(16): 8538-8560. https://hdl.handle.net/10.1029/2018JD028714, meer
- Pattyn, F.; Ritz, C.; Hanna, E.; Asay-Davis, X.S.; DeConto, R.; Durand, G.; Favier, L.; Fettweis, X.; Goelzer, H.; Golledge, N.R.; Kuipers Munneke, P.; Lenaerts, J.T.M.; Nowicki, S.; Payne, A.J.; Robinson, A.; Seroussi, H.; Trusel, L.D.; van den Broeke, M.R. (2018). The Greenland and Antarctic ice sheets under 1.5 °C global warming. Nat. Clim. Chang. 8(12): 1053-1061. https://dx.doi.org/10.1038/s41558-018-0305-8, meer
- Ran, J.; Vizcaino, M.; Ditmar, P.; van den Broeke, M.R.; Moon, T.; Steger, C.R.; Enderlin, E.M.; Wouters, B.; Noël, B.; Reijmer, C.H.; Klees, R.; Zhong, M.; Liu, L.; Fettweis, X. (2018). Seasonal mass variations show timing and magnitude of meltwater storage in the Greenland Ice Sheet. Cryosphere 12(9): 2981-2999. https://dx.doi.org/10.5194/tc-12-2981-2018, meer
- The IMBIE Team (2018). Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature (Lond.) 558(7709): 219-222. https://dx.doi.org/10.1038/s41586-018-0179-y, meer
- Trusel, L.D.; Das, S.B.; Osman, M.B.; Evans, M.J.; Smith, B.E.; Fettweis, X.; McConnell, J.R.; Noël, B.P.Y.; van den Broeke, M.R. (2018). Nonlinear rise in Greenland runoff in response to post-industrial Arctic warming. Nature (Lond.) 564(7734): 104-108. https://dx.doi.org/10.1038/s41586-018-0752-4, meer
- Fettweis, X.; Box, J.E.; Agosta, C.; Amory, C.; Kittel, C.; Lang, C.; van As, D.; Machguth, H.; Gallee, H. (2017). Reconstructions of the 1900-2015 Greenland ice sheet surface mass balance using the regional climate MAR model. Cryosphere 11(2): 1015-1033. https://hdl.handle.net/10.5194/tc-11-1015-2017, meer
- Fürst, J.J.; Gillet-Chaulet, F.; Benham, T.J.; Dowdeswell, J.A.; Grabiec, M.; Navarro, F.; Pettersson, R.; Moholdt, G.; Nuth, C.; Sass, B.; Aas, K.; Fettweis, X.; Lang, C.; Seehaus, T.; Braun, M. (2017). Application of a two-step approach for mapping ice thickness to various glacier types on Svalbard. Cryosphere 11(5): 2003-2032. https://dx.doi.org/10.5194/tc-11-2003-2017, meer
- Meyssignac, B.; Slangen, A.B.A.; Melet, A.; Church, J.A.; Fettweis, X.; Marzeion, B.; Agosta, C.; Ligtenberg, S.R.M.; Spada, G.; Richter, K.; Palmer, M.D.; Roberts, C.D.; Champollion, N. (2017). Evaluating model simulations of twentieth-century sea-level rise. Part II: regional sea-level changes. J. Clim. 30(21): 8565–8593. https://dx.doi.org/10.1175/jcli-d-17-0112.1, meer
- Meyssignac, B.; Fettweis, X.; Chevrier, R.; Spada, G. (2017). Regional sea level changes for the twentieth and the twenty-first centuries induced by the regional variability in Greenland ice sheet surface mass loss. J. Clim. 30(6): 2011-2028. https://dx.doi.org/10.1175/JCLI-D-16-0337.1, meer
- Slangen, A.B.A.; Meyssignac, B.; Agosta, C.; Champollion, N.; Church, J.A.; Fettweis, X.; Ligtenberg, S.R.M.; Marzeion, B.; Melet, A.; Palmer, M.D.; Richter, K.; Roberts, C.D.; Spada, G. (2017). Evaluating model simulations of 20th century sea-level rise. Part 1: global mean sea-level change. J. Clim. 30(21): 8539–8563. https://dx.doi.org/10.1175/jcli-d-17-0110.1, meer
- Tedstone, A.J.; Bamber, J.L.; Cook, J.M.; Williamson, C.J.; Fettweis, X.; Hodson, A.J.; Tranter, M. (2017). Dark ice dynamics of the south-west Greenland Ice Sheet. Cryosphere 11(6): 2491-2506. https://hdl.handle.net/10.5194/tc-11-2491-2017, meer
- Alexander, P.M.; Tedesco, M.; Schlegel, N.-J.; Luthcke, S.B.; Fettweis, X.; Larour, E. (2016). Greenland Ice Sheet seasonal and spatial mass variability from model simulations and GRACE (2003-2012). Cryosphere 10(3): 1259-1277. https://dx.doi.org/10.5194/tc-10-1259-2016, meer
- Blunden, J.; Arndt, D.S. (2016). State of the climate in 2015. Bull. Am. Meteorol. Soc. 97(8): Si-S275. https://hdl.handle.net/10.1175/2016bamsstateoftheclimate.1, meer
- Koenig, L.S.; Ivanoff, A.; Alexander, P.M.; MacGregor, J.A.; Fettweis, X.; Panzer, B.; Paden, J.D.; Forster, R.R.; Das, I.; McConnell, J.R.; Tedesco, M.; Leuschen, C.; Gogineni, P. (2016). Annual Greenland accumulation rates (2009-2012) from airborne snow radar. Cryosphere 10(4): 1739-1752. https://hdl.handle.net/10.5194/tc-10-1739-2016, meer
- Navari, M.; Margulis, S.A.; Bateni, S.M.; Tedesco, M.; Alexander, P.; Fettweis, X. (2016). Feasibility of improving a priori regional climate model estimates of Greenland ice sheet surface mass loss through assimilation of measured ice surface temperatures. Cryosphere 10(1): 103-120. https://dx.doi.org/10.5194/tc-10-103-2016, meer
- Schlegel, N.-J.; Wiese, D.N.; Larour, E.Y.; Watkins, M.M.; Box, J.E.; Fettweis, X.; van den Broeke, M.R. (2016). Application of GRACE to the assessment of model-based estimates of monthly Greenland Ice Sheet mass balance (2003-2012). Cryosphere 10(5): 1965-1989. https://dx.doi.org/10.5194/tc-10-1965-2016, meer
- Slangen, A.B.A.; Church, J.A.; Agosta, C.; Fettweis, X.; Marzeion, B.; Richter, K. (2016). Anthropogenic forcing dominates global mean sea-level rise since 1970. Nat. Clim. Chang. 6(7): 701-705. http://dx.doi.org/10.1038/nclimate2991, meer
- Tedesco, M.; Mote, T.; Fettweis, X.; Hanna, E.; Jeyaratnam, J.; Booth, J.F.; Datta, R.; Briggs, K. (2016). Arctic cut-off high drives the poleward shift of a new Greenland melting record. Nature Comm. 7: 6 pp. https://dx.doi.org/10.1038/ncomms11723, meer
- Agosta, C.; Fettweis, X.; Datta, R. (2015). Evaluation of the CMIP5 models in the aim of regional modelling of the Antarctic surface mass balance. Cryosphere 9(6): 2311-2321. dx.doi.org/10.5194/tc-9-2311-2015, meer
- Belleflamme, A.; Fettweis, X.; Erpicum, M. (2015). Recent summer Arctic atmospheric circulation anomalies in a historical perspective. Cryosphere 9(1): 53-64. dx.doi.org/10.5194/tc-9-53-2015, meer
- Edwards, L; Fettweis, X.; Gagliardini, O; Gillet-Chaulet, F; Goelzer, H.; Gregory, M; Hoffman, M; Huybrechts, P.; Payne, J; Perego, M; Price, S; Quiquet, A; Ritz, C (2014). Effect of uncertainty in surface mass balance-elevation feedback on projections of the future sea level contribution of the Greenland ice sheet. Cryosphere 8(1): 195-208. dx.doi.org/10.5194/tc-8-195-2014, meer
- Edwards, T.L.; Fettweis, X.; Gagliardini, O.; Gillet-Chaulet, F.; Goelzer, H.; Gregory, J.M.; Hoffmann, M.; Huybrechts, P.; Payne, A.J.; Perego, M.; Quiquet, A.; Ritz, C. (2014). Probabilistic parameterisation of the surface mass balance–elevation feedback in regional climate model simulations of the Greenland ice sheet. Cryosphere 8(1): 181-194. https://dx.doi.org/10.5194/tc-8-181-2014, meer
- Hanna, E; Fettweis, X.; Mernild, H; Cappelen, J; Ribergaard, H; Shuman, A; Steffen, K; Wood, L; Mote, L (2014). Atmospheric and oceanic climate forcing of the exceptional Greenland ice sheet surface melt in summer 2012. Int. J. Climatol. 34(4): 1022-1037. dx.doi.org/10.1002/joc.3743, meer
- Hinkel, J.; Lincke, D.; Vafeidis, A.T.; Perrette, M.; Nicholls, R.J.; Tol, R.S.J.; Marzeion, B.; Fettweis, X.; Ionescu, C.; Levermann, A. (2014). Coastal flood damage and adaptation costs under 21st century sea-level rise. Proc. Natl. Acad. Sci. U.S.A. 111(9): 3292-3297. dx.doi.org/10.1073/pnas.1222469111, meer
- McMillan, M; Shepherd, A; Gourmelen, N; Dehecq, A; Leeson, A; Ridout, A; Flament, T; Hogg, A; Gilbert, L; Benham, T; van den Broeke, M; Dowdeswell, A; Fettweis, X.; Noel, B; Strozzi, T (2014). Rapid dynamic activation of a marine-based Arctic ice cap. Geophys. Res. Lett. 41(24): 8902-8909. dx.doi.org/10.1002/2014GL062255, meer
- Noël, B.; Fettweis, X.; van de Berg, J; van den Broeke, R; Erpicum, M. (2014). Sensitivity of Greenland Ice Sheet surface mass balance to perturbations in sea surface temperature and sea ice cover: a study with the regional climate model MAR. Cryosphere 8(5): 1871-1883. dx.doi.org/10.5194/tc-8-1871-2014, meer
- van As, D.; Andersen, M.L.; Petersen, D.; Fettweis, X.; van Angelen, J.H.; Lenaerts, J.T.M.; van den Broeke, M.R.; Lea, J.M.; Boggild, C.E.; Ahlstrom, A.P.; Steffen, K. (2014). Increasing meltwater discharge from the Nuuk region of the Greenland ice sheet and implications for mass balance (1960-2012). J. Glaciol. 60(220): 314-322. https://dx.doi.org/10.3189/2014JoG13J065, meer
- Agosta, C.; Favier, V.; Krinner, G.; Gallee, H.; Fettweis, X.; Genthon, C. (2013). High-resolution modelling of the Antarctic surface mass balance, application for the twentieth, twenty first and twenty second centuries. Clim. Dyn. 41(11-12): 3247-3260. https://dx.doi.org/10.1007/s00382-013-1903-9, meer
- Fettweis, X.; Hanna, E.; Lang, C.; Belleflamme, A.; Erpicum, M.; Gallée, H. (2013). "Important role of the mid-tropospheric atmospheric circulation in the recent surface melt increase over the Greenland ice sheet". Cryosphere 7(1): 241-248. https://dx.doi.org/10.5194/tc-7-241-2013, meer
- Fettweis, X.; Franco, B.; Tedesco, M.; van Angelen, J.H.; Lenaerts, J.T.M.; van den Broeke, M.R.; Gallee, H. (2013). Estimating the Greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR. Cryosphere 7(2): 469-489. http://dx.doi.org/10.5194/tc-7-469-2013, meer
- Goelzer, H.; Huybrechts, P.; Fürst, J.J.; Nick, F.M.; Andersen, M.L.; Edwards, T.L.; Fettweis, X.; Payne, A.J.; Shannon, S. (2013). Sensitivity of Greenland ice sheet projections to model formulations. J. Glaciol. 59(216): 733-749. https://dx.doi.org/10.3189/2013JoG12J182, meer
- Gregory, J.M.; White, N.J.; Church, J.A.; Bierkens, M.F.P.; Box, J.E.; den Broeke, M.R.; Cogley, J.G.; Fettweis, X.; Hanna, E.; Huybrechts, P.; Konikow, L.F.; Leclercq, P.W.; Marzeion, B.; Oerlemans, J.; Tamisiea, M.E.; Wada, Y.; Wake, L.M.; de Wal, R.S.W. (2013). Twentieth-century global-mean sea level rise: is the whole greater than the sum of the parts? J. Clim. 26(13): 4476-4499. dx.doi.org/10.1175/JCLI-D-12-00319.1, meer
- Hanna, E.; Navarro, F.J.; Pattyn, F.; Domingues, C.M.; Fettweis, X.; Irvins, E.R.; Nicholls, R.J.; Ritz, C.; Smith, B.; Tulaczyk, S.; Whitehouse, P.L.; Zwally, H.J. (2013). Ice-sheet mass balance and climate change. Nature (Lond.) 498(7452): 51-59. dx.doi.org/10.1038/nature12238, meer
- Leeson, A.A.; Shepherd, A.; Sundal, A.V.; Johansson, A.M.; Selmes, N.; Briggs, K.; Hogg, A.E.; Fettweis, X. (2013). A comparison of supraglacial lake observations derived from MODIS imagery at the western margin of the Greenland ice sheet. J. Glaciol. 59(218): 1179-1188. dx.doi.org/10.3189/2013JoG13J064, meer
- Machguth, H.; Rastner, P.; Bolch, T.; Molg, N.; Sorensen, L.S.; Aoalgeirsdottir, G.; van Angelen, J.H.; van den Broeke, M.R.; Fettweis, X. (2013). The future sea-level rise contribution of Greenland's glaciers and ice caps. Environ. Res. Lett. 8(2): 14 pp. dx.doi.org/10.1088/1748-9326/8/2/025005, meer
- Shannon, S.R.; Payne, A.J.; Bartholomew, I.D.; van den Broeke, M.R.; Edwards, T.L.; Fettweis, X.; Gagliardini, O.; Gillet-Chaulet, F.; Goelzer, H.; Hoffman, M.J.; Huybrechts, P.; Mair, D.W.F.; Nienow, P.W.; Perego, M.; Price, S.F.; Smeets, C.J.P.P.; Sole, A.J.; van de Wal, R.S.W.; Zwinger, T. (2013). Enhanced basal lubrication and the contribution of the Greenland ice sheet to future sea-level rise. Proc. Natl. Acad. Sci. U.S.A. 110(35): 14156-14161. dx.doi.org/10.1073/pnas.1212647110, meer
- van Angelen, J.; Lenaerts, J.; van den Broeke, M.; Fettweis, X.; van Meijgaard, E. (2013). Rapid loss of firn pore space accelerates 21st century Greenland mass loss. Geophys. Res. Lett. 40(10): 2109-2113. dx.doi.org/10.1002/grl.50490, meer
- Vernon, C.L.; Bamber, J.L.; Box, J.E.; van den Broeke, M.R.; Fettweis, X.; Hanna, E.; Huybrechts, P. (2013). Surface mass balance model intercomparison for the Greenland ice sheet. Cryosphere 7(2): 599-614. https://dx.doi.org/10.5194/tc-7-599-2013, meer
- Franco, B.; Fettweis, X.; Lang, C.; Erpicum, M. (2012). Impact of spatial resolution on the modelling of the Greenland ice sheet surface mass balance between 1990–2010, using the regional climate model MAR. Cryosphere 6(3): 695-711. http://dx.doi.org/10.5194/tc-6-695-2012, meer
- Harper, J.; Humphrey, N.; Pfeffer, W.T.; Brown, J.; Fettweis, X. (2012). Greenland ice-sheet contribution to sea-level rise buffered by meltwater storage in firn. Nature (Lond.) 491(7423): 240-243. http://dx.doi.org/10.1038/nature11566, meer
- Masson-Delmotte, V.; Swingedouw, D.; Landais, A.; Seidenkrantz, M.; Gauthier, E.; Bichet, V.; Massa, C.; Perren, B.; Jomelli, V.; Adalgeirsdottir, G.; Christensen, J.; Arneborg, J.; Bhatt, U.; Walker, D.; Elberling, B.; Gillet-Chaulet, F.; Ritz, C.; Gallee, H.; van den Broeke, M.; Fettweis, X.; de Vernal, A.; Vinther, B. (2012). Greenland climate change: from the past to the future. Wiley Interdisciplinary Reviews: Climate Change 3(5): 427-449. dx.doi.org/10.1002/wcc.186, meer
- Tedesco, M.; Fettweis, X. (2012). 21st century projections of surface mass balance changes for major drainage systems of the Greenland ice sheet. Environ. Res. Lett. 7(4): 045405. https://dx.doi.org/10.1088/1748-9326/7/4/045405, meer
- Franco, B.; Fettweis, X.; Erpicum, M.; Nicolay, S. (2011). Present and future climates of the Greenland ice sheet according to the IPCC AR4 models. Clim. Dyn. 36(9-10): 1897-1918. dx.doi.org/10.1007/s00382-010-0779-1, meer
- Steen-Larsen, H.C.; Masson-Delmotte, V.; Sjolte, J.; Johnsen, S.J.; Vinther, B.M.; Bréon, F.M.; Clausen, H.B.; Dahl-Jensen, D.; Falourd, S.; Fettweis, X.; Gallée, H.; Jouzel, J.; Kageyama, M.; Lerche, H.; Minster, B.; Picard, G.; Punge, H.J.; Risi, C.; Salas, D.; Schwander, J.; Steffen, K.; Sveinbjörnsdóttir, A.E.; Svensson, A.; White, J. (2011). Understanding the climatic signal in the water stable isotope records from the NEEM shallow firn/ice cores in northwest Greenland. J. Geophys. Res. 116(D06108): 20 pp. dx.doi.org/10.1029/2010JD014311, meer
- Hanna, E.; Cappelen, J.; Fettweis, X.; Huybrechts, P.; Luckman, A.; Ribergaard, M.H. (2009). Hydrologic response of the Greenland ice sheet: the role of oceanographic warming. Hydrol. Process. 23(1): 7-30. https://dx.doi.org/10.1002/hyp.7090, meer
- Fettweis, X.; Hanna, E.; Gallée, H.; Huybrechts, P.; Erpicum, M. (2008). Estimation of the Greenland ice sheet surface mass balance for the 20th and 21st centuries. Cryosphere 2(2): 117-129. http://dx.doi.org/10.5194/tc-2-117-2008, meer
|