Zoeken
Zoeken kan via de modus 'eenvoudig zoeken' (één veld) of uitgebreid via 'geavanceerd zoeken' (meerdere velden). Zo kan je bv. zoeken op een combinatie van een auteursnaam (auteur), een jaartal (jaar) en een documenttype.
Boekenmand
Nuttige resultaten kan je aanvinken en toevoegen aan een mandje. De inhoud hiervan kan je exporteren of afdrukken (naar bv. PDF).
RSS
Op de hoogte blijven van nieuw toegevoegde publicaties binnen uw interessegebied? Dit kan door een RSS-feed (?) te maken van jouw zoekopdracht.
[ meld een fout in dit record ] | mandje (0): toevoegen | toon |
Assimilation of ocean colour data into a biochemical model of the North Atlantic: Part 1. Data assimilation experiments Natvik, L.-J.; Evensen, G. (2003). Assimilation of ocean colour data into a biochemical model of the North Atlantic: Part 1. Data assimilation experiments. J. Mar. Syst. 40-41: 127-153. https://dx.doi.org/10.1016/S0924-7963(03)00016-2
In: Journal of Marine Systems. Elsevier: Tokyo; Oxford; New York; Amsterdam. ISSN 0924-7963; e-ISSN 1879-1573, meer
Ook verschenen in: Grégoire, M.; Brasseur, P.; Lermusiaux, P.F.J. (Ed.) (2003). The use of data assimilation in coupled hydrodynamic, ecological and bio-geo-chemical models of the ocean. Selected papers from the 33rd International Liege Colloquium on Ocean Dynamics, held in Liege, Belgium on May 7-11th, 2001. Journal of Marine Systems, 40-41. Elsevier: Amsterdam. 1-406 pp., meer
|
Beschikbaar in | Auteurs |
Trefwoorden |
Filters > Kalman filters AN, North Atlantic [Marine Regions] Marien/Kust |
Author keywords |
|
Auteurs | Top | |
|
Abstract |
The physical ocean is described through the Miami Isopycnic Coordinate Ocean Model (MICOM). Its output, e.g. fields of temperature, velocities and layer thicknesses, is used to force the ecosystem model, which contains 11 biochemical components. The system is driven by realistic ECMWF atmospheric forcing fields. A simple demonstration experiment was performed for April and May 1998, that is, the early part of the North Atlantic spring bloom is included. It is shown that the ensemble Kalman filter analysis estimate is consistent with the choice of prior error variances. Furthermore, it is illustrated that the multivariate analysis scheme also affects the unobserved model compartments, and that the variance fields for all the variables decrease during the assimilation. A discussion of the number of ensemble members needed to ensure proper representations of the true error covariances is also given. In a companion paper [J. Mar. Syst. 40/41 (2003)], hereafter referred to as the Part 2 paper, we illustrate some useful approaches to monitor the evolution (i.e., time series) of the ensemble of model states. |
Top | Auteurs |