Zoeken
Zoeken kan via de modus 'eenvoudig zoeken' (één veld) of uitgebreid via 'geavanceerd zoeken' (meerdere velden). Zo kan je bv. zoeken op een combinatie van een auteursnaam (auteur), een jaartal (jaar) en een documenttype.
Boekenmand
Nuttige resultaten kan je aanvinken en toevoegen aan een mandje. De inhoud hiervan kan je exporteren of afdrukken (naar bv. PDF).
RSS
Op de hoogte blijven van nieuw toegevoegde publicaties binnen uw interessegebied? Dit kan door een RSS-feed (?) te maken van jouw zoekopdracht.
nieuwe zoekopdracht
Biochemodynamic features of metal ions bound by micro- and nano-plastics in aquatic media
Town, R.M.; Van Leeuwen, H.P.; Blust, R. (2018). Biochemodynamic features of metal ions bound by micro- and nano-plastics in aquatic media. Frontiers in Chemistry 6: 1-11. https://dx.doi.org/10.3389/fchem.2018.00627
In: Frontiers in Chemistry. Frontiers Media: Lausanne. e-ISSN 2296-2646
| |
Author keywords |
microplastic, nanoplastic; kinetics; dynamic metal speciation; bioavailability |
Auteurs | | Top |
- Town, R.M.
- Van Leeuwen, H.P.
- Blust, R.
|
|
|
Abstract |
A simple model, based on spherical geometry, is applied to the description of release kinetics of metal species from nano- and micro-plastic particles. Compiled literature data show that the effective diffusion coefficients, Deff, for metal species within plastic polymer bodies are many orders of magnitude lower than those applicable for metal ions in bulk aqueous media. Consequently, diffusion of metal ions in the aqueous medium is much faster than that within the body of the plastic particle. So long as the rate of dissociation of any inner-sphere metal complexes is greater than the rate of diffusion within the particle body, the latter process is the limiting step in the overall release kinetics of metal species that are sorbed within the body of the plastic particle. Metal ions that are sorbed at the very particle/medium interface and/or associated with surface-sorbed ligands do not need to traverse the particle body and thus in the diffusion-limiting case, their rate of release will correspond to the rate of diffusion in the aqueous medium. Irrespective of the intraparticulate metal speciation, for a given diffusion coefficient, the proportion of metal species released from plastic particles within a given time frame increases dramatically as the size of the particle decreases. The ensuing consequences for the chemodynamics and bioavailability of metal species associated with plastic micro- and nano-particles in aquatic systems are discussed and illustrated with practical examples. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.