Zoeken
Zoeken kan via de modus 'eenvoudig zoeken' (één veld) of uitgebreid via 'geavanceerd zoeken' (meerdere velden). Zo kan je bv. zoeken op een combinatie van een auteursnaam (auteur), een jaartal (jaar) en een documenttype.
Boekenmand
Nuttige resultaten kan je aanvinken en toevoegen aan een mandje. De inhoud hiervan kan je exporteren of afdrukken (naar bv. PDF).
RSS
Op de hoogte blijven van nieuw toegevoegde publicaties binnen uw interessegebied? Dit kan door een RSS-feed (?) te maken van jouw zoekopdracht.
nieuwe zoekopdracht
Analysis and indications on long-term forecasting of the oceanic Niño index with wavelet-induced components
Deliège, A.; Nicolay, S. (2017). Analysis and indications on long-term forecasting of the oceanic Niño index with wavelet-induced components. Pure Appl. Geophys. 174(4): 1815-1826. https://dx.doi.org/10.1007/s00024-017-1491-4
In: Pure and Applied Geophysics. Birkhäuser: Basel. ISSN 0033-4553; e-ISSN 1420-9136, meer
| |
Trefwoord |
|
Author keywords |
ONI modeling; ONI forecast; wavelet; time-frequency analysis |
Abstract |
The present paper provides an analysis and a long-term forecasting scheme of the Oceanic Nino Index (ONI) using the continuous wavelet transform. First, it appears that oscillatory components with main periods of about 17, 31, 43, 61 and 140 months govern most of the variability of the signal, which is consistent with previous works. Then, this information enables us to derive a simple algorithm to model and forecast ONI. The model is based on the observation that the modes extracted from the signal are generally phased with positive or negative anomalies of ONI (El Nino and La Nina events). Such a feature is exploited to generate locally stationary curves that mimic this behavior and which can be easily extrapolated to form a basic forecast. The wavelet transform is then used again to smooth out the process and finalize the predictions. The skills of the technique described in this paper are assessed through retroactive forecasts of past El Nino and La Nina events and via classic indicators computed as functions of the lead time. The main asset of the proposed model resides in its long-lead prediction skills. Consequently, this approach should prove helpful as a complement to other models for estimating the long-term trends of ONI. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.