Zoeken
Zoeken kan via de modus 'eenvoudig zoeken' (één veld) of uitgebreid via 'geavanceerd zoeken' (meerdere velden). Zo kan je bv. zoeken op een combinatie van een auteursnaam (auteur), een jaartal (jaar) en een documenttype.
Boekenmand
Nuttige resultaten kan je aanvinken en toevoegen aan een mandje. De inhoud hiervan kan je exporteren of afdrukken (naar bv. PDF).
RSS
Op de hoogte blijven van nieuw toegevoegde publicaties binnen uw interessegebied? Dit kan door een RSS-feed (?) te maken van jouw zoekopdracht.
nieuwe zoekopdracht
Enhanced ocean temperature forecast skills through 3-D super-ensemble multi-model fusion
Lenartz, F.; Mourre, B.; Barth, A.; Beckers, J.-M.; Vandenbulcke, L.; Rixen, M. (2010). Enhanced ocean temperature forecast skills through 3-D super-ensemble multi-model fusion. Geophys. Res. Lett. 37(L19606). dx.doi.org/10.1029/2010GL044591
In: Geophysical Research Letters. American Geophysical Union: Washington. ISSN 0094-8276; e-ISSN 1944-8007, meer
| |
Auteurs | | Top |
- Lenartz, F.
- Mourre, B.
- Barth, A.
|
- Beckers, J.-M.
- Vandenbulcke, L.
- Rixen, M.
|
|
Abstract |
An innovative multi-model fusion technique is proposed to improve short-term ocean temperature forecasts: the three-dimensional super-ensemble. In this method, a Kalman Filter is used to adjust three-dimensional model weights over a past learning period, allowing to give more importance to recent observations, and take into account spatially varying model skills. The predictive performance is evaluated against SST analyses, CTD casts and gliders tracks collected during the Ligurian Sea Cal/Val 2008 experiment. Statistical results not only show a very significant bias reduction of this multi-model forecast in comparison with the individual models, their ensemble mean and a single-weight-per-model version of the super-ensemble, but also the improvement of other pattern-related skills. In a 48-h forecast experiment, and with respect to the ensemble mean, surface and subsurface root-mean-square differences with observations are reduced by 57% and 35% respectively, making this new technique a suitable non-intrusive post-processing method for multi-model operational forecasting systems. |
IMIS is ontwikkeld en wordt gehost door het VLIZ.